How to use COG's (Cloud optimized GeoTIFFs) with Rasterio

Related tags

Geolocationcog_how_to
Overview

How to use COG's (Cloud optimized GeoTIFFs) with Rasterio

According to Cogeo.org:

A Cloud Opdtimized GeoTIFF (COG) is a regular GeoTIFF file, aimed at being hosted on a HTTP file server, with an internal organization that enables more efficient workflows on the cloud. It does this by leveraging the ability of clients issuing ​HTTP GET range requests to ask for just the parts of a file they need.

Think about the following case: You want to analyze the NDVI of your local 1km² park by using Sentinel 2 geoTIFF imaginery. Sentinel 2 satellite images cover very big regions. In the past, you had to download the whole file (100mb +) for band 4 (red) and the whole file for band 8 (near infrared) even that in fact, you need only a small portion of the data. That's why COG's (cloud optimized geoTIFFs) have been invented. With them, we ask the server to only send specific bytes of the image.

Cloud optimized geoTIFFs offer:

  • efficient imaginery data access
  • reduced duplication of data
  • legacy compatibility

COG's can be read just like normal geoTIFFs. In our example, we will use an AOI (area of interest), that is described in a geoJSON. We will also use sat-search to query the latest available Sentinel-2 satellite imaginery for our specific location. Then we will use Rasterio to perform a range request to download only the parts of the files we need. We will also use Pyproj to perform neccessary coordinate transformations. The cloud optimized Sentinel 2 imaginery is hosted in a AWS S3 repository.

Install libraries (matplotlib optional)

pip install rasterio pyproj sat-search matplotlib

Import libraries

from satsearch import Search
from datetime import datetime, timedelta
from pyproj import Transformer
from json import load

import rasterio
from rasterio.features import bounds

First, we need to open our geoJSON file and extract the geometry. To create a geoJSON, you can go to geojson.io. Do not make a very large geoJSON (a good size is 1x1km²), otherwise you might get an error later.

file_path = "path/to/your/file.geojson"
with open(file_path,"r") as fp:
    file_content = load(fp)
geometry = file_content["features"][0]["geometry"]

We will query for images not older than 60 days that contain less than 20% clouds.

# search last 60 days
current_date = datetime.now()
date_60_days_ago = current_date - timedelta(days=60)
current_date = current_date.strftime("%Y-%m-%d")
date_60_days_ago = date_60_days_ago.strftime("%Y-%m-%d")

# only request images with cloudcover less than 20%
query = {
    "eo:cloud_cover": {
        "lt": 20
        }
    }
search = Search(
    url='https://earth-search.aws.element84.com/v0',
    intersects=geometry,
    datetime=date_60_days_ago + "/" + current_date,
    collections=['sentinel-s2-l2a-cogs'],
    query=query
    )        
# grep latest red && nir
items = search.items()
latest_data = items.dates()[-1]
red = items[0].asset('red')["href"]
nir = items[0].asset('nir')["href"]
print(f"Latest data found that intersects geometry: {latest_data}")
print(f"Url red band: {red}")
print(f"Url nir band: {nir}")

Now we got the URLs of the most recent Sentinel 2 imaginery for our region. In the next step, we need to calculate which pixels to query from our geoTIFF server. The satellite image comes with 10980 x 10980 pixels. Every pixel represents 10 meter ground resolution. In order to calculate which pixels fall into our area of interest, we need to reproject our geoJSON coordinates into pixel row/col. With the recent Rasterio versions, we can read COGs by passing a rasterio.windows.Window (that specifies which row/col to query) to the read function. Before we can query, we need to open a virtual file(urls of a hosted file):

for geotiff_file in [red, nir]:
    with rasterio.open(geotiff_file) as geo_fp:

Then, we calculate the bounding box around our geometry and use the pyproj.Transformer to transform our geoJSON coordinates (EPSG 4326) into Sentinel Sat's EPSG 32633 projection.

        bbox = bounds(geometry)
        coord_transformer = Transformer.from_crs("epsg:4326", geo_fp.crs) 
        # calculate pixels to be streamed in cog 
        coord_upper_left = coord_transformer.transform(bbox[3], bbox[0])
        coord_lower_right = coord_transformer.transform(bbox[1], bbox[2]) 

Now that we have the right coordinates, we can calculate from coordinates to pixels in our geoTIFF file using rasterio.

        pixel_upper_left = geo_fp.index(
            coord_upper_left[0], 
            coord_upper_left[1]
            )
        pixel_lower_right = geo_fp.index(
            coord_lower_right[0], 
            coord_lower_right[1]
            )
        
        for pixel in pixel_upper_left + pixel_lower_right:
            # If the pixel value is below 0, that means that
            # the bounds are not inside of our available dataset.
            if pixel < 0:
                print("Provided geometry extends available datafile.")
                print("Provide a smaller area of interest to get a result.")
                exit()

Now we are ready for the desired range request.

        # make http range request only for bytes in window
        window = rasterio.windows.Window.from_slices(
            (
            pixel_upper_left[0], 
            pixel_lower_right[0]
            ), 
            (
            pixel_upper_left[1], 
            pixel_lower_right[1]
            )
        )
        subset = geo_fp.read(1, window=window)

The subset object contains the desired data. We can access and vizualize it with:

        import matplotlib.pyplot as plt
        plt.imshow(subset, cmap="seismic")
        plt.colorbar()

red nir

I hope, I was able to show you how COG's work and that you are ready now to access your cloud optimized geoTIFF images in seconds compared to minutes in the past. Have a great day!

All together:

from satsearch import Search
from datetime import datetime, timedelta
from pyproj import Transformer
from json import load

import rasterio
from rasterio.features import bounds

file_path = "path/to/your/file.geojson"
with open(file_path,"r") as fp:
    file_content = load(fp)
geometry = file_content["features"][0]["geometry"]

# search last 60 days
current_date = datetime.now()
date_60_days_ago = current_date - timedelta(days=60)
current_date = current_date.strftime("%Y-%m-%d")
date_60_days_ago = date_60_days_ago.strftime("%Y-%m-%d")

# only request images with cloudcover less than 20%
query = {
    "eo:cloud_cover": {
        "lt": 20
        }
    }
search = Search(
    url='https://earth-search.aws.element84.com/v0',
    intersects=geometry,
    datetime=date_60_days_ago + "/" + current_date,
    collections=['sentinel-s2-l2a-cogs'],
    query=query
    )        
# grep latest red && nir
items = search.items()
latest_data = items.dates()[-1]
red = items[0].asset('red')["href"]
nir = items[0].asset('nir')["href"]
print(f"Latest data found that intersects geometry: {latest_data}")
print(f"Url red band: {red}")
print(f"Url nir band: {nir}")

for geotiff_file in [red, nir]:
    with rasterio.open(geotiff_file) as geo_fp:
        bbox = bounds(geometry)
        coord_transformer = Transformer.from_crs("epsg:4326", geo_fp.crs) 
        # calculate pixels to be streamed in cog 
        coord_upper_left = coord_transformer.transform(bbox[3], bbox[0])
        coord_lower_right = coord_transformer.transform(bbox[1], bbox[2]) 
        pixel_upper_left = geo_fp.index(
            coord_upper_left[0], 
            coord_upper_left[1]
            )
        pixel_lower_right = geo_fp.index(
            coord_lower_right[0], 
            coord_lower_right[1]
            )
        
        for pixel in pixel_upper_left + pixel_lower_right:
            # If the pixel value is below 0, that means that
            # the bounds are not inside of our available dataset.
            if pixel < 0:
                print("Provided geometry extends available datafile.")
                print("Provide a smaller area of interest to get a result.")
                exit()
        
        # make http range request only for bytes in window
        window = rasterio.windows.Window.from_slices(
            (
            pixel_upper_left[0], 
            pixel_lower_right[0]
            ), 
            (
            pixel_upper_left[1], 
            pixel_lower_right[1]
            )
        )
        subset = geo_fp.read(1, window=window)

        # vizualize
        import matplotlib.pyplot as plt
        plt.imshow(subset, cmap="seismic")
        plt.colorbar()
        plt.show()
Owner
Marvin Gabler
specialized in climate, data & risk | interested in nature, rockets and outer space | The earth's data for our world's future
Marvin Gabler
ColoringMapAlgorithm-CSP- - Graphical Coloring of Countries with Condition Satisfaction Algorithm

ColoringMapAlgorithm-CSP- Condition Satisfaction Algorithm Output Condition

Kerem TAN 2 Jan 10, 2022
GeoNode is an open source platform that facilitates the creation, sharing, and collaborative use of geospatial data.

Table of Contents What is GeoNode? Try out GeoNode Install Learn GeoNode Development Contributing Roadmap Showcase Most useful links Licensing What is

GeoNode Development Team 1.2k Dec 26, 2022
Platform for building statistical models of cities and regions

UrbanSim UrbanSim is a platform for building statistical models of cities and regions. These models help forecast long-range patterns in real estate d

Urban Data Science Toolkit 419 Dec 30, 2022
This program analizes films database with adresses, and creates a folium map with closest films to the coordinates

Films-map-project UCU CS lab 1.2, 1st year This program analizes films database with adresses, and creates a folium map with closest films to the coor

Artem Moskovets 1 Feb 09, 2022
Example of animated maps in matplotlib + geopandas using entire time series of congressional district maps from UCLA archive. rendered, interactive version below

Example of animated maps in matplotlib + geopandas using entire time series of congressional district maps from UCLA archive. rendered, interactive version below

Apoorva Lal 5 May 18, 2022
A GUI widget for Linux to show current time in different timezones.

A GUI widget to show current time in different timezones (under development). To use this widget: Run scripts/startup.py Select a country. A list of t

B.Jothin kumar 11 Nov 10, 2022
OSMnx: Python for street networks. Retrieve, model, analyze, and visualize street networks and other spatial data from OpenStreetMap.

OSMnx OSMnx is a Python package that lets you download geospatial data from OpenStreetMap and model, project, visualize, and analyze real-world street

Geoff Boeing 4k Jan 08, 2023
Python project to generate Kerala's distrcit level panchayath map.

Kerala-Panchayath-Maps Python project to generate Kerala's distrcit level panchayath map. As of now, geojson files of Kollam and Kozhikode are added t

Athul R T 2 Jan 10, 2022
WIP: extracting Geometry utilities from datacube-core

odc.geo This is still work in progress. This repository contains geometry related code extracted from Open Datacube. For details and motivation see OD

Open Data Cube 34 Jan 09, 2023
Implementation of Trajectory classes and functions built on top of GeoPandas

MovingPandas MovingPandas implements a Trajectory class and corresponding methods based on GeoPandas. Visit movingpandas.org for details! You can run

Anita Graser 897 Jan 01, 2023
python toolbox for visualizing geographical data and making maps

geoplotlib is a python toolbox for visualizing geographical data and making maps data = read_csv('data/bus.csv') geoplotlib.dot(data) geoplotlib.show(

Andrea Cuttone 976 Dec 11, 2022
Bacon - Band-limited Coordinate Networks for Multiscale Scene Representation

BACON: Band-limited Coordinate Networks for Multiscale Scene Representation Project Page | Video | Paper Official PyTorch implementation of BACON. BAC

Stanford Computational Imaging Lab 144 Dec 29, 2022
A public data repository for datasets created from TransLink GTFS data.

TransLink Spatial Data What: TransLink is the statutory public transit authority for the Metro Vancouver region. This GitHub repository is a collectio

Henry Tang 3 Jan 14, 2022
Focal Statistics

Focal-Statistics The Focal statistics tool in many GIS applications like ArcGIS, QGIS and GRASS GIS is a standard method to gain a local overview of r

Ifeanyi Nwasolu 1 Oct 21, 2021
Spatial Interpolation Toolbox is a Python-based GUI that is able to interpolate spatial data in vector format.

Spatial Interpolation Toolbox This is the home to Spatial Interpolation Toolbox, a graphical user interface (GUI) for interpolating geographic vector

Michael Ward 2 Nov 01, 2021
EOReader is a multi-satellite reader allowing you to open optical and SAR data.

Remote-sensing opensource python library reading optical and SAR sensors, loading and stacking bands, clouds, DEM and index.

ICube-SERTIT 152 Dec 30, 2022
A short term landscape evolution using a path sampling method to solve water and sediment flow continuity equations and model mass flows over complex topographies.

r.sim.terrain A short-term landscape evolution model that simulates topographic change for both steady state and dynamic flow regimes across a range o

Brendan Harmon 7 Oct 21, 2022
A modern, geometric typeface by @chrismsimpson (last commit @ 85fa625 Jun 9, 2020 before deletion)

Metropolis A modern, geometric typeface. Influenced by other popular geometric, minimalist sans-serif typefaces of the new millenium. Designed for opt

Darius 183 Dec 25, 2022
geobeam - adds GIS capabilities to your Apache Beam and Dataflow pipelines.

geobeam adds GIS capabilities to your Apache Beam pipelines. What does geobeam do? geobeam enables you to ingest and analyze massive amounts of geospa

Google Cloud Platform 61 Nov 08, 2022
Raster-based Spatial Analysis for Python

🌍 xarray-spatial: Raster-Based Spatial Analysis in Python 📍 Fast, Accurate Python library for Raster Operations ⚡ Extensible with Numba ⏩ Scalable w

makepath 649 Jan 01, 2023