Image augmentation library in Python for machine learning.

Overview

AugmentorLogo

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independent, which is more convenient, allows for finer grained control over augmentation, and implements the most real-world relevant augmentation techniques. It employs a stochastic approach using building blocks that allow for operations to be pieced together in a pipeline.

PyPI Supported Python Versions Documentation Status Build Status License Project Status: Active – The project has reached a stable, usable state and is being actively developed. Binder

Installation

Augmentor is written in Python. A Julia version of the package is also being developed as a sister project and is available here.

Install using pip from the command line:

pip install Augmentor

See the documentation for building from source. To upgrade from a previous version, use pip install Augmentor --upgrade.

Documentation

Complete documentation can be found on Read the Docs: http://augmentor.readthedocs.io/

Quick Start Guide and Usage

The purpose of Augmentor is to automate image augmentation (artificial data generation) in order to expand datasets as input for machine learning algorithms, especially neural networks and deep learning.

The package works by building an augmentation pipeline where you define a series of operations to perform on a set of images. Operations, such as rotations or transforms, are added one by one to create an augmentation pipeline: when complete, the pipeline can be executed and an augmented dataset is created.

To begin, instantiate a Pipeline object that points to a directory on your file system:

import Augmentor
p = Augmentor.Pipeline("/path/to/images")

You can then add operations to the Pipeline object p as follows:

p.rotate(probability=0.7, max_left_rotation=10, max_right_rotation=10)
p.zoom(probability=0.5, min_factor=1.1, max_factor=1.5)

Every function requires you to specify a probability, which is used to decide if an operation is applied to an image as it is passed through the augmentation pipeline.

Once you have created a pipeline, you can sample from it like so:

p.sample(10000)

which will generate 10,000 augmented images based on your specifications. By default these will be written to the disk in a directory named output relative to the path specified when initialising the p pipeline object above.

If you wish to process each image in the pipeline exactly once, use process():

p.process()

This function might be useful for resizing a dataset for example. It would make sense to create a pipeline where all of its operations have their probability set to 1 when using the process() method.

Multi-threading

Augmentor (version >=0.2.1) now uses multi-threading to increase the speed of generating images.

This may slow down some pipelines if the original images are very small. Set multi_threaded to False if slowdown is experienced:

p.sample(100, multi_threaded=False)

However, by default the sample() function uses multi-threading. This is currently only implemented when saving to disk. Generators will use multi-threading in the next version update.

Ground Truth Data

Images can be passed through the pipeline in groups of two or more so that ground truth data can be identically augmented.

Original image and mask[3] Augmented original and mask images
OriginalMask AugmentedMask

To augment ground truth data in parallel to any original data, add a ground truth directory to a pipeline using the ground_truth() function:

p = Augmentor.Pipeline("/path/to/images")
# Point to a directory containing ground truth data.
# Images with the same file names will be added as ground truth data
# and augmented in parallel to the original data.
p.ground_truth("/path/to/ground_truth_images")
# Add operations to the pipeline as normal:
p.rotate(probability=1, max_left_rotation=5, max_right_rotation=5)
p.flip_left_right(probability=0.5)
p.zoom_random(probability=0.5, percentage_area=0.8)
p.flip_top_bottom(probability=0.5)
p.sample(50)

Multiple Mask/Image Augmentation

Using the DataPipeline class (Augmentor version >= 0.2.3), images that have multiple associated masks can be augmented:

Multiple Mask Augmentation
MultipleMask

Arbitrarily long lists of images can be passed through the pipeline in groups and augmented identically using the DataPipeline class. This is useful for ground truth images that have several masks, for example.

In the example below, the images and their masks are contained in the images data structure (as lists of lists), while their labels are contained in y:

p = Augmentor.DataPipeline(images, y)
p.rotate(1, max_left_rotation=5, max_right_rotation=5)
p.flip_top_bottom(0.5)
p.zoom_random(1, percentage_area=0.5)

augmented_images, labels = p.sample(100)

The DataPipeline returns images directly (augmented_images above), and does not save them to disk, nor does it read data from the disk. Images are passed directly to DataPipeline during initialisation.

For details of the images data structure and how to create it, see the Multiple-Mask-Augmentation.ipynb Jupyter notebook.

Generators for Keras and PyTorch

If you do not wish to save to disk, you can use a generator (in this case with Keras):

g = p.keras_generator(batch_size=128)
images, labels = next(g)

which returns a batch of images of size 128 and their corresponding labels. Generators return data indefinitely, and can be used to train neural networks with augmented data on the fly.

Alternatively, you can integrate it with PyTorch:

import torchvision
transforms = torchvision.transforms.Compose([
    p.torch_transform(),
    torchvision.transforms.ToTensor(),
])

Main Features

Elastic Distortions

Using elastic distortions, one image can be used to generate many images that are real-world feasible and label preserving:

Input Image Augmented Images
eight_hand_drawn_border eights_border

The input image has a 1 pixel black border to emphasise that you are getting distortions without changing the size or aspect ratio of the original image, and without any black/transparent padding around the newly generated images.

The functionality can be more clearly seen here:

Original Image[1] Random distortions applied
Original Distorted

Perspective Transforms

There are a total of 12 different types of perspective transform available. Four of the most common are shown below.

Tilt Left Tilt Right Tilt Forward Tilt Backward
TiltLeft Original Original Original

The remaining eight types of transform are as follows:

Skew Type 0 Skew Type 1 Skew Type 2 Skew Type 3
Skew0 Skew1 Skew2 Skew3
Skew Type 4 Skew Type 5 Skew Type 6 Skew Type 7
Skew4 Skew5 Skew6 Skew7

Size Preserving Rotations

Rotations by default preserve the file size of the original images:

Original Image Rotated 10 degrees, automatically cropped
Original Rotate

Compared to rotations by other software:

Original Image Rotated 10 degrees
Original Rotate

Size Preserving Shearing

Shearing will also automatically crop the correct area from the sheared image, so that you have an image with no black space or padding.

Original image Shear (x-axis) 20 degrees Shear (y-axis) 20 degrees
Original ShearX ShearY

Compare this to how this is normally done:

Original image Shear (x-axis) 20 degrees Shear (y-axis) 20 degrees
Original ShearX ShearY

Cropping

Cropping can also be handled in a manner more suitable for machine learning image augmentation:

Original image Random crops + resize operation
Original Original

Random Erasing

Random Erasing is a technique used to make models robust to occlusion. This may be useful for training neural networks used in object detection in navigation scenarios, for example.

Original image[2] Random Erasing
Original Original

See the Pipeline.random_erasing() documentation for usage.

Chaining Operations in a Pipeline

With only a few operations, a single image can be augmented to produce large numbers of new, label-preserving samples:

Original image Distortions + mirroring
Original DistortFlipFlop

In the example above, we have applied three operations: first we randomly distort the image, then we flip it horizontally with a probability of 0.5 and then vertically with a probability of 0.5. We then sample from this pipeline 100 times to create 100 new data.

p.random_distortion(probability=1, grid_width=4, grid_height=4, magnitude=8)
p.flip_left_right(probability=0.5)
p.flip_top_bottom(probability=0.5)
p.sample(100)

Tutorial Notebooks

Integration with Keras using Generators

Augmentor can be used as a replacement for Keras' augmentation functionality. Augmentor can create a generator which produces augmented data indefinitely, according to the pipeline you have defined. See the following notebooks for details:

  • Reading images from a local directory, augmenting them at run-time, and using a generator to pass the augmented stream of images to a Keras convolutional neural network, see Augmentor_Keras.ipynb
  • Augmenting data in-memory (in array format) and using a generator to pass these new images to the Keras neural network, see Augmentor_Keras_Array_Data.ipynb

Per-Class Augmentation Strategies

Augmentor allows for pipelines to be defined per class. That is, you can define different augmentation strategies on a class-by-class basis for a given classification problem.

See an example of this in the following Jupyter notebook: Per_Class_Augmentation_Strategy.ipynb

Complete Example

Let's perform an augmentation task on a single image, demonstrating the pipeline and several features of Augmentor.

First import the package and initialise a Pipeline object by pointing it to a directory containing your images:

import Augmentor

p = Augmentor.Pipeline("/home/user/augmentor_data_tests")

Now you can begin adding operations to the pipeline object:

p.rotate90(probability=0.5)
p.rotate270(probability=0.5)
p.flip_left_right(probability=0.8)
p.flip_top_bottom(probability=0.3)
p.crop_random(probability=1, percentage_area=0.5)
p.resize(probability=1.0, width=120, height=120)

Once you have added the operations you require, you can sample images from this pipeline:

p.sample(100)

Some sample output:

Input Image[3] Augmented Images
Original Augmented

The augmented images may be useful for a boundary detection task, for example.

Licence and Acknowledgements

Augmentor is made available under the terms of the MIT Licence. See Licence.md.

[1] Checkerboard image obtained from Wikimedia Commons and is in the public domain: https://commons.wikimedia.org/wiki/File:Checkerboard_pattern.svg

[2] Street view image is in the public domain: http://stokpic.com/project/italian-city-street-with-shoppers/

[3] Skin lesion image obtained from the ISIC Archive:

You can use urllib to obtain the skin lesion image in order to reproduce the augmented images above:

>>> from urllib import urlretrieve
>>> im_url = "https://isic-archive.com:443/api/v1/image/5436e3abbae478396759f0cf/download"
>>> urlretrieve(im_url, "ISIC_0000000.jpg")
('ISIC_0000000.jpg', <httplib.HTTPMessage instance at 0x7f7bd949a950>)

Note: For Python 3, use from urllib.request import urlretrieve.

Logo created at LogoMakr.com

Tests

To run the automated tests, clone the repository and run:

$ py.test -v

from the command line. To view the CI tests that are run after each commit, see https://travis-ci.org/mdbloice/Augmentor.

Citing Augmentor

If you find this package useful and wish to cite it, you can use

Marcus D Bloice, Peter M Roth, Andreas Holzinger, Biomedical image augmentation using Augmentor, Bioinformatics, https://doi.org/10.1093/bioinformatics/btz259

Asciicast

Click the preview below to view a video demonstration of Augmentor in use:

asciicast

Owner
Marcus D. Bloice
Researcher in applied machine learning for healthcare, Medical University of Graz, Austria.
Marcus D. Bloice
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is

Yao Feng 1.5k Jan 02, 2023
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a

Tristan Croll 24 Nov 23, 2022
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Cross-modal Retrieval using Transformer Encoder Reasoning Networks This project reimplements the idea from "Transformer Reasoning Network for Image-Te

Minh-Khoi Pham 5 Nov 05, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022