[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

Related tags

Deep LearningMosaicKD
Overview

MosaicKD

Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data"

1. Motivation

Natural images share common local patterns. In MosaicKD, these local patterns are first dissembled from OOD data and then assembled to synthesize in-domain data, making OOD-KD feasible.

2. Method

MosaicKD establishes a four-player minimax game between a generator G, a patch discriminator D, a teacher model T and a student model S. The generator, as those in prior GANs, takes as input a random noise vector and learns to mosaic synthetic in-domain samples with locally-authentic and globally-legitimate distributions, under the supervisions back-propagated from the other three players.

3. Reproducing our results

3.1 Prepare teachers

Please download our pre-trained models from Dropbox (266 M) and extract them as "checkpoints/pretrained/*.pth". You can also train your own models as follows:

python train_scratch.py --lr 0.1 --batch-size 256 --model wrn40_2 --dataset cifar100

3.2 OOD-KD: CIFAR-100 (ID) + CIFAR10 (OOD)

  • Vanilla KD (Blind KD)

    python kd_vanilla.py --lr 0.1 --batch-size 128 --teacher wrn40_2 --student wrn16_1 --dataset cifar100 --unlabeled cifar10 --epoch 200 --gpu 0 
  • Data-Free KD (DFQAD)

    python kd_datafree.py --lr 0.1 --batch-size 256 --teacher wrn40_2 --student wrn16_1 --dataset cifar100 --unlabeled cifar10 --epoch 200 --lr 0.1 --local 1 --align 1 --adv 1 --balance 10 --gpu 0
  • MosaicKD (This work)

    python kd_mosaic.py --lr 0.1 --batch-size 256 --teacher wrn40_2 --student wrn16_1 --dataset cifar100 --unlabeled cifar10 --epoch 200 --lr 0.1 --local 1 --align 1 --adv 1 --balance 10 --gpu 0

3.3 OOD-KD: CIFAR-100 (ID) + ImageNet/Places365 OOD Subset (OOD)

  • Prepare 32x32 datasets
    Please prepare the 32x32 ImageNet following the instructions from https://patrykchrabaszcz.github.io/Imagenet32/ and extract them as "data/ImageNet_32x32/train" and "data/ImageNet_32x32/val". You can prepare Places365 in the same way.

  • MosaicKD on OOD subset
    As ImageNet & Places365 contain a large number of in-domain samples, we construct OOD subset for training. Please run the scripts with ''--ood_subset'' to enable subset selection.

    python kd_mosaic.py --lr 0.1 --batch-size 256 --teacher wrn40_2 --student wrn16_1 --dataset cifar100 --unlabeled cifar10 --epoch 200 --lr 0.1 --local 1 --align 1 --adv 1 --balance 10 --ood_subset --gpu 0

4. Visualization of synthetic data

5. Citation

If you found this work useful for your research, please cite our paper:

@article{fang2021mosaicking,
  title={Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data},
  author={Gongfan Fang and Yifan Bao and Jie Song and Xinchao Wang and Donglin Xie and Chengchao Shen and Mingli Song},
  journal={arXiv preprint arXiv:2110.15094},
  year={2021}
}
Owner
ZJU-VIPA
Laboratory of Visual Intelligence and Pattern Analysis
ZJU-VIPA
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Code for our NeurIPS 2021 paper: Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains

GateL0RD This is a lightweight PyTorch implementation of GateL0RD, our RNN presented in "Sparsely Changing Latent States for Prediction and Planning i

Autonomous Learning Group 16 Nov 03, 2022
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
Experiments for Neural Flows paper

Neural Flows: Efficient Alternative to Neural ODEs [arxiv] TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster a

54 Dec 07, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022