Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

Related tags

Deep LearningNRNS
Overview

No RL No Simulation (NRNS)

Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

NRNS is a heriarchical modular approach to image goal navigation that uses a topological map and distance estimator to navigate and self-localize. Distance function and target prediction function are learnt over passive video trajectories gathered from Mp3D and Gibson.

NRNS is a heriarchical modular approach to image goal navigation that uses a topological map and distance estimator to navigate and self-localize. Distance function and target prediction function are learnt over passive video trajectories gathered from Mp3D and Gibson.

[project website]

Setup

This project is developed with Python 3.6. If you are using miniconda or anaconda, you can create an environment:

conda create -n nrns python3.6
conda activate nrns

Install Habitat and Other Dependencies

NRNS makes extensive use of the Habitat Simulator and Habitat-Lab developed by FAIR. You will first need to install both Habitat-Sim and Habitat-Lab.

Please find the instructions to install habitat here

If you are using conda, Habitat-Sim can easily be installed with

conda install -c aihabitat -c conda-forge habitat-sim headless

We recommend downloading the test scenes and running the example script as described here to ensure the installation of Habitat-Sim and Habitat-Lab was successful. Now you can clone this repository and install the rest of the dependencies:

git clone [email protected]:meera1hahn/NRNS.git
cd NRNS
python -m pip install -r requirements.txt
python download_aux.py

Download Scene Data

Like Habitat-Lab, we expect a data folder (or symlink) with a particular structure in the top-level directory of this project. Running the download_aux.py script will download the pretrained models but you will still need to download the scene data. We evaluate our agents on Matterport3D (MP3D) and Gibson scene reconstructions. Instructions on how to download RealEstate10k can be found here.

Image-Nav Test Episodes

The image-nav test epsiodes used in this paper for MP3D and Gibson can be found here. These were used to test all baselines and NRNS.

Matterport3D

The official Matterport3D download script (download_mp.py) can be accessed by following the "Dataset Download" instructions on their project webpage. The scene data can then be downloaded this way:

# requires running with python 2.7
python download_mp.py --task habitat -o data/scene_datasets/mp3d/

Extract this data to data/scene_datasets/mp3d such that it has the form data/scene_datasets/mp3d/{scene}/{scene}.glb. There should be 90 total scenes. We follow the standard train/val/test splits.

Gibson

The official Gibson dataset can be accessed on their project webpage. Please follow the link to download the Habitat Simulator compatible data. The link will first take you to the license agreement and then to the data. We follow the standard train/val/test splits.

Running pre-trained models

Look at the run scripts in src/image_nav/run_scripts/ for examples of how to run the model.

Difficulty settings options are: easy, medium, hard

Path Type setting options are: straight, curved

To run NRNS on gibson without noise for example on the straight setting with a medium difficulty

cd src/image_nav/
python -W ignore run.py \
    --dataset 'gibson' \
    --path_type 'straight' \
    --difficulty 'medium' \

Citing

If you use NRNS in your research, please cite the following paper:

@inproceedings{hahn_nrns_2021,
  title={No RL, No Simulation: Learning to Navigate without Navigating},
  author={Meera Hahn and Devendra Chaplot and Mustafa Mukadam and James M. Rehg and Shubham Tulsiani and Abhinav Gupta},
  booktitle={Neurips},
  year={2021}
 }
Owner
Meera Hahn
Ph.D. Student in Computer Science School of Interactive Computing Georgia Institute of Technology
Meera Hahn
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023
Deep learning models for change detection of remote sensing images

Change Detection Models (Remote Sensing) Python library with Neural Networks for Change Detection based on PyTorch. ⚡ ⚡ ⚡ I am trying to build this pr

Kaiyu Li 176 Dec 24, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc

JKU Linz, Institute of Computer Graphics 39 Dec 09, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Ensembling Off-the-shelf Models for GAN Training

Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t

345 Dec 28, 2022
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022

A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Oscar Celma 1.5k Dec 17, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022