Instance-conditional Knowledge Distillation for Object Detection

Related tags

Deep LearningICD
Overview

Instance-conditional Knowledge Distillation for Object Detection

This is a MegEngine implementation of the paper "Instance-conditional Knowledge Distillation for Object Detection", based on MegEngine Models.

The pytorch implementation based on detectron2 will be released soon.

Instance-Conditional Knowledge Distillation for Object Detection,
Zijian Kang, Peizhen Zhang, Xiangyu Zhang, Jian Sun, Nanning Zheng
In: Proc. Advances in Neural Information Processing Systems (NeurIPS), 2021
[arXiv]

Requirements

Installation

In order to run the code, please prepare a CUDA environment with:

  1. Install dependancies.
pip3 install --upgrade pip
pip3 install -r requirements.txt
  1. Prepare MS-COCO 2017 dataset,put it to a proper directory with the following structures:
/path/to/
    |->coco
    |    |annotations
    |    |train2017
    |    |val2017

Microsoft COCO: Common Objects in Context Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. European Conference on Computer Vision (ECCV), 2014.

Usage

Train baseline models

Following MegEngine Models:

python3 train.py -f distill_configs/retinanet_res50_coco_1x_800size.py -n 8 \
                       -d /data/Datasets

train.py arguments:

  • -f, config file for the network.
  • -n, required devices(gpu).
  • -w, pretrained backbone weights.
  • -b, training batch size, default is 2.
  • -d, dataset root,default is /data/datasets.

Train with distillation

python3 train_distill_icd.py -f distill_configs/retinanet_res50_coco_1x_800size.py \ 
    -n 8 -l -d /data/Datasets -tf configs/retinanet_res101_coco_3x_800size.py \
    -df distill_configs/ICD.py \
    -tw _model_zoo/retinanet_res101_coco_3x_800size_41dot4_73b01887.pkl

train_distill_icd.py arguments:

  • -f, config file for the student network.
  • -w, pretrained backbone weights.
  • -tf, config file for the teacher network.
  • -tw, pretrained weights for the teacher.
  • -df, config file for the distillation module, distill_configs/ICD.py by default.
  • -l, use the inheriting strategy, load pretrained parameters.
  • -n, required devices(gpu).
  • -b, training batch size, default is 2.
  • -d, dataset root,default is /data/datasets.

Note that we set backbone_pretrained in distill configs, where backbone weights will be loaded automatically, that -w can be omitted. Checkpoints will be saved to a log-xxx directory.

Evaluate

python3 test.py -f distill_configs/retinanet_res50_coco_3x_800size.py -n 8 \
     -w log-of-xxx/epoch_17.pkl -d /data/Datasets/

test.py arguments:

  • -f, config file for the network.
  • -n, required devices(gpu).
  • -w, pretrained weights.
  • -d, dataset root,default is /data/datasets.

Examples and Results

Steps

  1. Download the pretrained teacher model to _model_zoo directory.
  2. Train baseline or distill with ICD.
  3. Evaluate checkpoints (use the last checkpoint by default).

Example of Common Detectors

RetinaNet

Command:

python3 train_distill_icd.py -f distill_configs/retinanet_res50_coco_1x_800size.py \
    -n 8 -l -d /data/Datasets -tf configs/retinanet_res101_coco_3x_800size.py \
    -df distill_configs/ICD.py \
    -tw _model_zoo/retinanet_res101_coco_3x_800size_41dot4_73b01887.pkl

FCOS

Command:

python3 train_distill_icd.py -f distill_configs/fcos_res50_coco_1x_800size.py \
    -n 8 -l -d /data/Datasets -tf configs/fcos_res101_coco_3x_800size.py \
    -df distill_configs/ICD.py \
    -tw _model_zoo/fcos_res101_coco_3x_800size_44dot3_f38e8df1.pkl

ATSS

Command:

python3 train_distill_icd.py -f distill_configs/atss_res50_coco_1x_800size.py \
    -n 8 -l -d /data/Datasets -tf configs/atss_res101_coco_3x_800size.py \
    -df distill_configs/ICD.py \
    -tw _model_zoo/atss_res101_coco_3x_800size_44dot7_9181687e.pkl

Results of AP in MS-COCO:

Model Baseline +ICD
Retinanet 36.8 40.3
FCOS 40.0 43.3
ATSS 39.6 43.0

Notice

  • Results of this implementation are mainly for demonstration, please refer to the Detectron2 version for reproduction.

  • We simply adopt the hyperparameter from Detectron2 version, further tunning could be helpful.

  • There is a known CUDA memory issue related to MegEngine: the actual memory consumption will be much larger than the theoretical value, due to the memory fragmentation. This is expected to be fixed in a future version of MegEngine.

Acknowledgement

This repo is modified from MegEngine Models. We also refer to Pytorch, DETR and Detectron2 for some implementations.

License

This repo is licensed under the Apache License, Version 2.0 (the "License").

Citation

@inproceedings{kang2021icd,
    title={Instance-conditional Distillation for Object Detection},
    author={Zijian Kang, Peizhen Zhang, Xiangyu Zhang, Jian Sun, Nanning Zheng},
    year={2021},
    booktitle={NeurIPS},
}
Owner
MEGVII Research
Power Human with AI. 持续创新拓展认知边界 非凡科技成就产品价值
MEGVII Research
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Dec 29, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023