Instance-based label smoothing for improving deep neural networks generalization and calibration

Overview

Instance-based Label Smoothing for Neural Networks

  • Pytorch Implementation of the algorithm.
  • This repository includes a new proposed method for instance-based label smoothing in neural networks, where the target probability distribution is not uniformly distributed among incorrect classes. Instead, each incorrect class is going to be assigned a target probability that is proportional to the output score of this particular class relative to all the remaining classes for a network trained with vanilla cross-entropy loss on the hard target labels.
Instance-based Label Smoothing idea
  • The following figure summarizes the idea of our instance-based label smoothing that aims to keep the information about classes similarity structure while training using label smoothing.
Instance-based Label Smoothing process

Requirements

  • Python 3.x
  • pandas
  • numpy
  • pytorch

Usage

Datasets

  • CIFAR10 / CIFAR100 / FashionMNIST

Files Content

The project have a structure as below:

├── Vanilla-cross-entropy.py
├── Label-smoothing.py
├── Instance-based-smoothing.py
├── Models-evaluation.py
├── Network-distillation.py
├── utils
│   ├── data_loader.py
│   ├── utils.py
│   ├── evaluate.py
│   ├── params.json
├── models
│   ├── resnet.py
│   ├── densenet.py
│   ├── inception.py
│   ├── shallownet.py

Vanilla-cross-entropy.py is the file used for training the networks using cross-entropy without label smoothing.
Label-smoothing.py is the file used for training the networks using cross-entropy with standard label smoothing.
Instance-based-smoothing.py is the file used for training the networks using cross-entropy with instance-based label smoothing.
Models-evaluation.py is the file used for evaluation of the trained networks.
Network-distillation.py is the file used for distillation of trained networks into a shallow convolutional network of 5 layers.
models/ includes all the implementations of the different architectures used in our evaluation like ResNet, DenseNet, Inception-V4. Also, the shallow-cnn student network used in distillation experiments.
utils/ includes all utilities functions required for the different models training and evaluation.

Example

python Instance-based-smoothing.py --dataset cifar10 --model resnet18 --num_classes 10

List of Arguments accepted for Codes of Training and Evaluation of Different Models:

--lr type = float, default = 0.1, help = Starting learning rate (A weight decay of $1e^{-4}$ is used).
--tr_size type = float, default = 0.8, help = Size of training set split out of the whole training set (0.2 for validation).
--batch_size type = int, default = 512, help = Batch size of mini-batch training process.
--epochs type = int, default = 100, help = Number of training epochs.
--estop type = int, default = 10, help = Number of epochs without loss improvement leading to early stopping.
--ece_bins type = int, default = 10, help = Number of bins for expected calibration error calculation.
--dataset, type=str, help=Name of dataset to be used (cifar10/cifar100/fashionmnist).
--num_classes type = int, default = 10, help = Number of classes in the dataset.
--model, type=str, help=Name of the model to be trained. eg: resnet18 / resnet50 / inceptionv4 / densetnet (works for FashionMNIST only).

Results

  • Results of the comparison of different methods on 3 datasets using 4 different architectures are reported in the following table.
  • The experiments were repeated 3 times, and average $\pm$ stdev of log loss, expected calibration error (ECE), accuracy, distilled student network accuracy and distilled student log loss metrics are reported.
  • A t-sne visualization for the logits of 3-different classes in CIFAR-10 can be shown below:
Owner
Mohamed Maher
Junior Research Fellow
Mohamed Maher
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Yaoming Cai 5 Jul 18, 2022
This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Subreddit Analysis This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by

Georgios Chochlakis 1 Dec 17, 2021
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Repository for reproducing `Model-Based Robust Deep Learning`

Model-Based Robust Deep Learning (MBRDL) In this repository, we include the code necessary for reproducing the code used in Model-Based Robust Deep Le

Alex Robey 16 Sep 19, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
PyTorch implementation of the paper The Lottery Ticket Hypothesis for Object Recognition

LTH-ObjectRecognition The Lottery Ticket Hypothesis for Object Recognition Sharath Girish*, Shishira R Maiya*, Kamal Gupta, Hao Chen, Larry Davis, Abh

16 Feb 06, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos

Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize

Meta Research 144 Dec 26, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022