SVG Icon processing tool for C++

Related tags

Deep Learningbawr
Overview

BAWR

This is a tool to automate the icons generation from sets of svg files into fonts and atlases.

The main purpose of this tool is to add it to the build process of your c++ project and let it do all the work, then you can use your svg icons as fonts or as spritesheets.

The project url is: https://github.com/mnesarco/bawr This project is based on a previous project: https://github.com/mnesarco/ff-batch

Features

  • Generate TrueType fonts from svg collections.
  • Generate png textures from svg collections.
  • Embed binaries into c++ sources ready to link.
  • Generate ImGui Font Loaders (c++). (howto)
  • Generate c++ Atlas Maps.
  • Generate c++ Font constants as Macros and/or as const/constexpr.
  • Apply transformation to svg files during the generation.
    • Textual transformations
    • Font forge supported transformations

Requirements

  • Python 3.6+
  • FontForge 20170924+
  • Inkscape 1.0+

Install

Build from sources

git clone https:://github.com/mnesarco/bawr.git
cd bawr

python3 -m pip install --upgrade build
python3 -m pip install wheel

python3 -m build 
python3 -m pip install dist/bawr-0.0.3-py3-none-any.whl

Or from pypi:

python3 -m pip install bawr

Terminology

Concept Description
Svg Icon It is just a file in .svg format. It must be a square.
Icon set or Collection It is a folder with svg icons
Configuration file It is a python file with all the options to generate your files. By convention it is called config.py

Usage

  1. Create a folder
  2. Put a file named config.py (you can copy the one from examples dir https://github.com/mnesarco/bawr/tree/main/examples)
  3. Add folders with svg icons
  4. Adjust the configuration (edit config.py)
  5. Call bawr
cd examples
python3 -m bawr.tool

Examples

You can use the examples dir (https://github.com/mnesarco/bawr/tree/main/examples) as a template for your project:

examples/
├── config.py
├── icons/
└── bootstrap-icons/

Result (generated files):

examples/build/
├── atlas_cells.hpp
├── atlas.cpp
├── atlas.hpp
├── atlas.png
├── my-icons_codes.hpp
├── my-icons.cpp
├── my-icons.hpp
├── my-icons_loader.hpp
└── my-icons.ttf

Configuration (config.py)

#------------------------------------------------------------------------------
# Import all required stuff:
#------------------------------------------------------------------------------

from bawr.config import *

#------------------------------------------------------------------------------
# Define an environment (Use the name that you want, but extend Environment):
#------------------------------------------------------------------------------

class Env( Environment ):

    # [Optional] FONTFORGE_PATH = Path to fontforge executable, deduced if it is in PATH
    # FONTFORGE_PATH = ...

    # [Optional] INKSCAPE_PATH = Path to inkscape executable, deduced if it is in PATH
    # INKSCAPE_PATH = ...   

    # [Optional] BAWR_OUTPUT_DIR = Where all the output will be generated. Default = ./build
    # BAWR_OUTPUT_DIR = ...

    # [Optional] BAWR_SOURCE_DIR = Where all the icon folders will be found. Default = ./
    #  BAWR_SOURCE_DIR = ...

    pass

#------------------------------------------------------------------------------
# Define your icon sets (extend IconSet):
#------------------------------------------------------------------------------

class BootstrapIcons( IconSet ):

    # [Mandatory] src = directory name (which contains svg icons)
    src = 'bootstrap-icons'

    # [Optional] select = selection of icons from the directory: list( tuple(file-name, glyph-name) )
    select = [
        ('info-circle',              'infoCircle'),
        ('file-earmark',             'fileEarmark'),
        ('folder2-open',             'folderOpen'),
        ('hdd',                      'save'),
        ('file-earmark-arrow-up',    'fileImport'),
        ('file-earmark-arrow-down',  'fileExport'),
        ('folder',                   'folder'),
        ('sliders',                  'sliders'),
        ('eye',                      'eye'),
        ('layers',                   'layers'),
    ]

    # [Optional] options = Special options for generators
    options = {
        "font_transformation": [('scale', 0.75, 0.75)],
        "atlas_preprocessors": [
            RegexReplacePreprocessor(
                {
                    "currentColor": "#ffffff",
                    'width="1em"': 'width="16"',
                    'height="1em"': 'height="16"',
                }            
            )
        ],
        "atlas_margin": 0.0625
    }

# Another icon set with different options

class MyIcons( IconSet ):

    src = 'icons'

    options = {
        "atlas_preprocessors": [
            RegexReplacePreprocessor(
                {
                    'fill:#000000': "fill:#ffffff",
                    'stroke:#000000': 'stroke:#ffffff',
                }            
            )
        ]
    }

#------------------------------------------------------------------------------
# [Optional]
# Define Font generator to generate truetype fonts using FontForge
# (extend Font)
#------------------------------------------------------------------------------

class MyFont( Font ):

    # Generated font copyright notice [Mandatory]
    copyright = "Copyright 2020 Frank D. Martinez M."

    # Font name [Mandatory]
    name = "my-icons"

    # Font family [Mandatory]
    family = "my-icons"

    # First font glyph code [Optional] (default = 0xe000)
    # start_code = 0xe000

    # List ot tuple of the icon sets included in this font [Mandatory]
    collections = (BootstrapIcons, MyIcons)

    # Global font transformation [Optiona] (See: Font transformations)
    # transformation = []

    # Output format [Optional] (default = ['ttf'])
    # output_formats = ['ttf']

    # Verbose output. Shows glyph generation details [Optional] (default = False)
    # verbose = False


#------------------------------------------------------------------------------
# [Optional]
# You can generate a C++ font header file with glyph codes ready to use in C++.
# (extend CppFontHeader)
#------------------------------------------------------------------------------

class MyCppFontH( CppFontHeader ):

    # [Mandatory] Reference to the font generator to use
    source = MyFont    

    # [Optional] Generate constexpr values (default = false)
    constexpr = True

    # [Optional] name of the generated c++ file (default = source.name)
    # name = ...

    # [Optional] namespace of the generated c++ file (default = icons)
    # namespace = ...

    # [Optional] Generate macros (default = True)
    # macros = ...

    # [Optional] Prefix for all macros (default = Icon_)
    # macro_prefix = ...


#------------------------------------------------------------------------------
# [Optional]
# You can Embed your font binary into a C++ source file to be linked.
# (extend CppEmbedded)
#------------------------------------------------------------------------------

class MyCppFontEmbed( CppEmbedded ):

    # [Mandatory] Reference to the binary file to embed
    source = "${BAWR_OUTPUT_DIR}/my-icons.ttf"

    # [Optional] name prefix for the generated files (default = source name)
    # name = ...

    # [Optional] namespace for the generated files (default = icons)
    # namespace = ...


#------------------------------------------------------------------------------
# [Optional]
# You can generate C++ code to load your font into Dear ImGui.
# (extend CppEmbedded)
#------------------------------------------------------------------------------

class MyCppFontImGui( ImGuiFontLoader ):

    # [Mandatory] reference to the font
    font = MyFont

    # [Mandatory] reference to the font header
    header = MyCppFontH    

    # [Mandatory] reference to the embedded binary
    data = MyCppFontEmbed

    # [Optional] name prefix for the generated files (default = font.name)
    # name = ...

    # [Optional] namespace for the generated files (default = icons)
    # namespace = ...

#------------------------------------------------------------------------------
# [Optional]
# You can generate an optimized png atlas with all your icons in different sizes.
# (extend Atlas)
#------------------------------------------------------------------------------

class MyAtlas( Atlas ):

    # [Optional] width of the atlas image (default = 512)
    width = 512

    # [Mandatory] sizes of the icons to be generated and included in the atlas
    sizes = (16, 32, 64)

    # [Mandatory] References to collections (icon sets) to be included
    collections = (BootstrapIcons, MyIcons)

    # [Optional] name prefix for the generated files (default = font.name)
    # name = ...

# [Optional] Embed the Atlas png into a C++ source.
class MyCppAtlasEmbed( CppEmbedded ):
    source = "${BAWR_OUTPUT_DIR}/atlas.png"

#------------------------------------------------------------------------------
# [Optional]
# Generate a C++ header file with the atlas cells (frames) to be used in your code.
# (extend CppAtlasHeader)
#------------------------------------------------------------------------------

class MyAtlasHeader( CppAtlasHeader ):
    source = MyAtlas

How to use with Dear ImGui:

https://github.com/mnesarco/bawr/blob/main/ImGui.md

What is in the name

BAWR in honor of Bertrand Arthur William Russell, a great Logician, Mathematician and Philosopher of the IX and XX centuries.

Owner
Frank David Martínez M
Frank David Martínez M
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
Code for SALT: Stackelberg Adversarial Regularization, EMNLP 2021.

SALT: Stackelberg Adversarial Regularization Code for Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach, EMNLP 2021. R

Simiao Zuo 10 Jan 10, 2022
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
The most simple and minimalistic navigation dashboard.

Navigation This project follows a goal to have simple and lightweight dashboard with different links. I use it to have my own self-hosted service dash

Yaroslav 23 Dec 23, 2022
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022