SVG Icon processing tool for C++

Related tags

Deep Learningbawr
Overview

BAWR

This is a tool to automate the icons generation from sets of svg files into fonts and atlases.

The main purpose of this tool is to add it to the build process of your c++ project and let it do all the work, then you can use your svg icons as fonts or as spritesheets.

The project url is: https://github.com/mnesarco/bawr This project is based on a previous project: https://github.com/mnesarco/ff-batch

Features

  • Generate TrueType fonts from svg collections.
  • Generate png textures from svg collections.
  • Embed binaries into c++ sources ready to link.
  • Generate ImGui Font Loaders (c++). (howto)
  • Generate c++ Atlas Maps.
  • Generate c++ Font constants as Macros and/or as const/constexpr.
  • Apply transformation to svg files during the generation.
    • Textual transformations
    • Font forge supported transformations

Requirements

  • Python 3.6+
  • FontForge 20170924+
  • Inkscape 1.0+

Install

Build from sources

git clone https:://github.com/mnesarco/bawr.git
cd bawr

python3 -m pip install --upgrade build
python3 -m pip install wheel

python3 -m build 
python3 -m pip install dist/bawr-0.0.3-py3-none-any.whl

Or from pypi:

python3 -m pip install bawr

Terminology

Concept Description
Svg Icon It is just a file in .svg format. It must be a square.
Icon set or Collection It is a folder with svg icons
Configuration file It is a python file with all the options to generate your files. By convention it is called config.py

Usage

  1. Create a folder
  2. Put a file named config.py (you can copy the one from examples dir https://github.com/mnesarco/bawr/tree/main/examples)
  3. Add folders with svg icons
  4. Adjust the configuration (edit config.py)
  5. Call bawr
cd examples
python3 -m bawr.tool

Examples

You can use the examples dir (https://github.com/mnesarco/bawr/tree/main/examples) as a template for your project:

examples/
├── config.py
├── icons/
└── bootstrap-icons/

Result (generated files):

examples/build/
├── atlas_cells.hpp
├── atlas.cpp
├── atlas.hpp
├── atlas.png
├── my-icons_codes.hpp
├── my-icons.cpp
├── my-icons.hpp
├── my-icons_loader.hpp
└── my-icons.ttf

Configuration (config.py)

#------------------------------------------------------------------------------
# Import all required stuff:
#------------------------------------------------------------------------------

from bawr.config import *

#------------------------------------------------------------------------------
# Define an environment (Use the name that you want, but extend Environment):
#------------------------------------------------------------------------------

class Env( Environment ):

    # [Optional] FONTFORGE_PATH = Path to fontforge executable, deduced if it is in PATH
    # FONTFORGE_PATH = ...

    # [Optional] INKSCAPE_PATH = Path to inkscape executable, deduced if it is in PATH
    # INKSCAPE_PATH = ...   

    # [Optional] BAWR_OUTPUT_DIR = Where all the output will be generated. Default = ./build
    # BAWR_OUTPUT_DIR = ...

    # [Optional] BAWR_SOURCE_DIR = Where all the icon folders will be found. Default = ./
    #  BAWR_SOURCE_DIR = ...

    pass

#------------------------------------------------------------------------------
# Define your icon sets (extend IconSet):
#------------------------------------------------------------------------------

class BootstrapIcons( IconSet ):

    # [Mandatory] src = directory name (which contains svg icons)
    src = 'bootstrap-icons'

    # [Optional] select = selection of icons from the directory: list( tuple(file-name, glyph-name) )
    select = [
        ('info-circle',              'infoCircle'),
        ('file-earmark',             'fileEarmark'),
        ('folder2-open',             'folderOpen'),
        ('hdd',                      'save'),
        ('file-earmark-arrow-up',    'fileImport'),
        ('file-earmark-arrow-down',  'fileExport'),
        ('folder',                   'folder'),
        ('sliders',                  'sliders'),
        ('eye',                      'eye'),
        ('layers',                   'layers'),
    ]

    # [Optional] options = Special options for generators
    options = {
        "font_transformation": [('scale', 0.75, 0.75)],
        "atlas_preprocessors": [
            RegexReplacePreprocessor(
                {
                    "currentColor": "#ffffff",
                    'width="1em"': 'width="16"',
                    'height="1em"': 'height="16"',
                }            
            )
        ],
        "atlas_margin": 0.0625
    }

# Another icon set with different options

class MyIcons( IconSet ):

    src = 'icons'

    options = {
        "atlas_preprocessors": [
            RegexReplacePreprocessor(
                {
                    'fill:#000000': "fill:#ffffff",
                    'stroke:#000000': 'stroke:#ffffff',
                }            
            )
        ]
    }

#------------------------------------------------------------------------------
# [Optional]
# Define Font generator to generate truetype fonts using FontForge
# (extend Font)
#------------------------------------------------------------------------------

class MyFont( Font ):

    # Generated font copyright notice [Mandatory]
    copyright = "Copyright 2020 Frank D. Martinez M."

    # Font name [Mandatory]
    name = "my-icons"

    # Font family [Mandatory]
    family = "my-icons"

    # First font glyph code [Optional] (default = 0xe000)
    # start_code = 0xe000

    # List ot tuple of the icon sets included in this font [Mandatory]
    collections = (BootstrapIcons, MyIcons)

    # Global font transformation [Optiona] (See: Font transformations)
    # transformation = []

    # Output format [Optional] (default = ['ttf'])
    # output_formats = ['ttf']

    # Verbose output. Shows glyph generation details [Optional] (default = False)
    # verbose = False


#------------------------------------------------------------------------------
# [Optional]
# You can generate a C++ font header file with glyph codes ready to use in C++.
# (extend CppFontHeader)
#------------------------------------------------------------------------------

class MyCppFontH( CppFontHeader ):

    # [Mandatory] Reference to the font generator to use
    source = MyFont    

    # [Optional] Generate constexpr values (default = false)
    constexpr = True

    # [Optional] name of the generated c++ file (default = source.name)
    # name = ...

    # [Optional] namespace of the generated c++ file (default = icons)
    # namespace = ...

    # [Optional] Generate macros (default = True)
    # macros = ...

    # [Optional] Prefix for all macros (default = Icon_)
    # macro_prefix = ...


#------------------------------------------------------------------------------
# [Optional]
# You can Embed your font binary into a C++ source file to be linked.
# (extend CppEmbedded)
#------------------------------------------------------------------------------

class MyCppFontEmbed( CppEmbedded ):

    # [Mandatory] Reference to the binary file to embed
    source = "${BAWR_OUTPUT_DIR}/my-icons.ttf"

    # [Optional] name prefix for the generated files (default = source name)
    # name = ...

    # [Optional] namespace for the generated files (default = icons)
    # namespace = ...


#------------------------------------------------------------------------------
# [Optional]
# You can generate C++ code to load your font into Dear ImGui.
# (extend CppEmbedded)
#------------------------------------------------------------------------------

class MyCppFontImGui( ImGuiFontLoader ):

    # [Mandatory] reference to the font
    font = MyFont

    # [Mandatory] reference to the font header
    header = MyCppFontH    

    # [Mandatory] reference to the embedded binary
    data = MyCppFontEmbed

    # [Optional] name prefix for the generated files (default = font.name)
    # name = ...

    # [Optional] namespace for the generated files (default = icons)
    # namespace = ...

#------------------------------------------------------------------------------
# [Optional]
# You can generate an optimized png atlas with all your icons in different sizes.
# (extend Atlas)
#------------------------------------------------------------------------------

class MyAtlas( Atlas ):

    # [Optional] width of the atlas image (default = 512)
    width = 512

    # [Mandatory] sizes of the icons to be generated and included in the atlas
    sizes = (16, 32, 64)

    # [Mandatory] References to collections (icon sets) to be included
    collections = (BootstrapIcons, MyIcons)

    # [Optional] name prefix for the generated files (default = font.name)
    # name = ...

# [Optional] Embed the Atlas png into a C++ source.
class MyCppAtlasEmbed( CppEmbedded ):
    source = "${BAWR_OUTPUT_DIR}/atlas.png"

#------------------------------------------------------------------------------
# [Optional]
# Generate a C++ header file with the atlas cells (frames) to be used in your code.
# (extend CppAtlasHeader)
#------------------------------------------------------------------------------

class MyAtlasHeader( CppAtlasHeader ):
    source = MyAtlas

How to use with Dear ImGui:

https://github.com/mnesarco/bawr/blob/main/ImGui.md

What is in the name

BAWR in honor of Bertrand Arthur William Russell, a great Logician, Mathematician and Philosopher of the IX and XX centuries.

Owner
Frank David Martínez M
Frank David Martínez M
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

223 Dec 17, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022