An extension to pandas dataframes describe function.

Overview

pandas_summary

An extension to pandas dataframes describe function.

The module contains DataFrameSummary object that extend describe() with:

  • properties
    • dfs.columns_stats: counts, uniques, missing, missing_perc, and type per column
    • dsf.columns_types: a count of the types of columns
    • dfs[column]: more in depth summary of the column
  • function
    • summary(): extends the describe() function with the values with columns_stats

Installation

The module can be easily installed with pip:

> pip install pandas-summary

This module depends on numpy and pandas. Optionally you can get also some nice visualisations if you have matplotlib installed.

Tests

To run the tests, execute the command python setup.py test

Usage

The module contains one class:

DataFrameSummary

The DataFrameSummary expect a pandas DataFrame to summarise.

from pandas_summary import DataFrameSummary

dfs = DataFrameSummary(df)

getting the columns types

dfs.columns_types


numeric     9
bool        3
categorical 2
unique      1
date        1
constant    1
dtype: int64

getting the columns stats

dfs.columns_stats


                      A            B        C              D              E 
counts             5802         5794     5781           5781           4617   
uniques            5802            3     5771            128            121   
missing               0            8       21             21           1185   
missing_perc         0%        0.14%    0.36%          0.36%         20.42%   
types            unique  categorical  numeric        numeric        numeric 

getting a single column summary, e.g. numerical column

# we can also access the column using numbers A[1]
dfs['A']

std                                                                 0.2827146
max                                                                  1.072792
min                                                                         0
variance                                                           0.07992753
mean                                                                0.5548516
5%                                                                  0.1603367
25%                                                                 0.3199776
50%                                                                 0.4968588
75%                                                                 0.8274732
95%                                                                  1.011255
iqr                                                                 0.5074956
kurtosis                                                            -1.208469
skewness                                                            0.2679559
sum                                                                  3207.597
mad                                                                 0.2459508
cv                                                                  0.5095319
zeros_num                                                                  11
zeros_perc                                                               0,1%
deviating_of_mean                                                          21
deviating_of_mean_perc                                                  0.36%
deviating_of_median                                                        21
deviating_of_median_perc                                                0.36%
top_correlations                         {u'D': 0.702240243124, u'E': -0.663}
counts                                                                   5781
uniques                                                                  5771
missing                                                                    21
missing_perc                                                            0.36%
types                                                                 numeric
Name: A, dtype: object

Future development

Summary analysis between columns, i.e. dfs[[1, 2]]

Owner
Mourad
engineer, startup enthusiast, philosophy and music lover, coffeeholic... and more
Mourad
Larch: Applications and Python Library for Data Analysis of X-ray Absorption Spectroscopy (XAS, XANES, XAFS, EXAFS), X-ray Fluorescence (XRF) Spectroscopy and Imaging

Larch: Data Analysis Tools for X-ray Spectroscopy and More Documentation: http://xraypy.github.io/xraylarch Code: http://github.com/xraypy/xraylarch L

xraypy 95 Dec 13, 2022
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment

Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment Brief explanation of PT Bukalapak.com Tbk Bukalapak was found

Najibulloh Asror 2 Feb 10, 2022
Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Data Scientist Learning Plan Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Trung-Duy Nguyen 27 Nov 01, 2022
Shot notebooks resuming the main functions of GeoPandas

Shot notebooks resuming the main functions of GeoPandas, 2 notebooks written as Exercises to apply these functions.

1 Jan 12, 2022
Python tools for querying and manipulating BIDS datasets.

PyBIDS is a Python library to centralize interactions with datasets conforming BIDS (Brain Imaging Data Structure) format.

Brain Imaging Data Structure 180 Dec 18, 2022
This repo contains a simple but effective tool made using python which can be used for quality control in statistical approach.

📈 Statistical Quality Control 📉 This repo contains a simple but effective tool made using python which can be used for quality control in statistica

SasiVatsal 8 Oct 18, 2022
cLoops2: full stack analysis tool for chromatin interactions

cLoops2: full stack analysis tool for chromatin interactions Introduction cLoops2 is an extension of our previous work, cLoops. From loop-calling base

YaqiangCao 25 Dec 14, 2022
Senator Trades Monitor

Senator Trades Monitor This monitor will grab the most recent trades by senators and send them as a webhook to discord. Installation To use the monito

Yousaf Cheema 5 Jun 11, 2022
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
Nobel Data Analysis

Nobel_Data_Analysis This project is for analyzing a set of data about people who have won the Nobel Prize in different fields and different countries

Mohammed Hassan El Sayed 1 Jan 24, 2022
Candlestick Pattern Recognition with Python and TA-Lib

Candlestick-Pattern-Recognition-with-Python-and-TA-Lib Goal Look at the S&P500 to try and get a better understanding of these candlestick patterns and

Ganesh Jainarain 11 Oct 07, 2022
A collection of robust and fast processing tools for parsing and analyzing web archive data.

ChatNoir Resiliparse A collection of robust and fast processing tools for parsing and analyzing web archive data. Resiliparse is part of the ChatNoir

ChatNoir 24 Nov 29, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Hydrogen (or other pure gas phase species) depressurization calculations

HydDown Hydrogen (or other pure gas phase species) depressurization calculations This code is published under an MIT license. Install as simple as: pi

Anders Andreasen 13 Nov 26, 2022
SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

SNV Pipeline SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

East Genomics 1 Nov 02, 2021
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Includes all files needed to satisfy hw02 requirements

HW 02 Data Sets Mean Scale Score for Asian and Hispanic Students, Grades 3 - 8 This dataset provides insights into the New York City education system

7 Oct 28, 2021
Programmatically access the physical and chemical properties of elements in modern periodic table.

API to fetch elements of the periodic table in JSON format. Uses Pandas for dumping .csv data to .json and Flask for API Integration. Deployed on "pyt

the techno hack 3 Oct 23, 2022
Full automated data pipeline using docker images

Create postgres tables from CSV files This first section is only relate to creating tables from CSV files using postgres container alone. Just one of

1 Nov 21, 2021