End-to-End Referring Video Object Segmentation with Multimodal Transformers

Related tags

Deep LearningMTTR
Overview

End-to-End Referring Video Object Segmentation with Multimodal Transformers

License Framework

This repo contains the official implementation of the paper:


End-to-End Referring Video Object Segmentation with Multimodal Transformers

MTTR_preview.mp4

How to Run the Code

First, clone this repo to your local machine using:

git clone https://github.com/mttr2021/MTTR.git

Dataset Requirements

A2D-Sentences

Follow the instructions here to download the dataset. Then, extract and organize the files inside your cloned repo directory as follows (note that only the necessary files are shown):

MTTR/
└── a2d_sentences/ 
    ├── Release/
    │   ├── videoset.csv  (videos metadata file)
    │   └── CLIPS320/
    │       └── *.mp4     (video files)
    └── text_annotations/
        ├── a2d_annotation.txt  (actual text annotations)
        ├── a2d_missed_videos.txt
        └── a2d_annotation_with_instances/ 
            └── */ (video folders)
                └── *.h5 (annotations files) 

###JHMDB-Sentences Follow the instructions here to download the dataset. Then, extract and organize the files inside your cloned repo directory as follows (note that only the necessary files are shown):

MTTR/
└── jhmdb_sentences/ 
    ├── Rename_Images/  (frame images)
    │   └── */ (action dirs)
    ├── puppet_mask/  (mask annotations)
    │   └── */ (action dirs)
    └── jhmdb_annotation.txt  (text annotations)

Refer-YouTube-VOS

Download the dataset from the competition's website here.

Note that you may be required to sign up to the competition in order to get access to the dataset. This registration process is free and short.

Then, extract and organize the files inside your cloned repo directory as follows (note that only the necessary files are shown):

MTTR/
└── refer_youtube_vos/ 
    ├── train/
    │   ├── JPEGImages/
    │   │   └── */ (video folders)
    │   │       └── *.jpg (frame image files) 
    │   └── Annotations/
    │       └── */ (video folders)
    │           └── *.png (mask annotation files) 
    ├── valid/
    │   └── JPEGImages/
    │       └── */ (video folders)
    │           └── *.jpg (frame image files) 
    └── meta_expressions/
        ├── train/
        │   └── meta_expressions.json  (text annotations)
        └── valid/
            └── meta_expressions.json  (text annotations)

Environment Installation

The code was tested on a Conda environment installed on Ubuntu 18.04. Install Conda and then create an environment as follows:

conda create -n mttr python=3.9.7 pip -y

conda activate mttr

  • Pytorch 1.10:

conda install pytorch==1.10.0 torchvision==0.11.1 -c pytorch -c conda-forge

Note that you might have to change the cudatoolkit version above according to your system's CUDA version.

  • Hugging Face transformers 4.11.3:

pip install transformers==4.11.3

  • COCO API (for mAP calculations):

pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

  • Additional required packages:

pip install h5py wandb opencv-python protobuf av einops ruamel.yaml timm joblib

conda install -c conda-forge pandas matplotlib cython scipy cupy

Running Configuration

The following table lists the parameters which can be configured directly from the command line.

The rest of the running/model parameters for each dataset can be configured in configs/DATASET_NAME.yaml.

Note that in order to run the code the path of the relevant .yaml config file needs to be supplied using the -c parameter.

Command Description
-c path to dataset configuration file
-rm running mode (train/eval)
-ws window size
-bs training batch size per GPU
-ebs eval batch size per GPU (if not provided, training batch size is used)
-ng number of GPUs to run on

Evaluation

The following commands can be used to reproduce the main results of our paper using the supplied checkpoint files.

The commands were tested on RTX 3090 24GB GPUs, but it may be possible to run some of them using GPUs with less memory by decreasing the batch-size -bs parameter.

A2D-Sentences

Window Size Command Checkpoint File mAP Result
10 python main.py -rm eval -c configs/a2d_sentences.yaml -ws 10 -bs 3 -ckpt CHECKPOINT_PATH -ng 2 Link 46.1
8 python main.py -rm eval -c configs/a2d_sentences.yaml -ws 8 -bs 3 -ckpt CHECKPOINT_PATH -ng 2 Link 44.7

JHMDB-Sentences

The following commands evaluate our A2D-Sentences-pretrained model on JHMDB-Sentences without additional training.

For this purpose, as explained in our paper, we uniformly sample three frames from each video. To ensure proper reproduction of our results on other machines we include the metadata of the sampled frames under datasets/jhmdb_sentences/jhmdb_sentences_samples_metadata.json. This file is automatically loaded during the evaluation process with the commands below.

To avoid using this file and force sampling different frames, change the seed and generate_new_samples_metadata parameters under MTTR/configs/jhmdb_sentences.yaml.

Window Size Command Checkpoint File mAP Result
10 python main.py -rm eval -c configs/jhmdb_sentences.yaml -ws 10 -bs 3 -ckpt CHECKPOINT_PATH -ng 2 Link 39.2
8 python main.py -rm eval -c configs/jhmdb_sentences.yaml -ws 8 -bs 3 -ckpt CHECKPOINT_PATH -ng 2 Link 36.6

Refer-YouTube-VOS

The following command evaluates our model on the public validation subset of Refer-YouTube-VOS dataset. Since annotations are not publicly available for this subset, our code generates a zip file with the predicted masks under MTTR/runs/[RUN_DATE_TIME]/validation_outputs/submission_epoch_0.zip. This zip needs to be uploaded to the competition server for evaluation. For your convenience we supply this zip file here as well.

Window Size Command Checkpoint File Output Zip J&F Result
12 python main.py -rm eval -c configs/refer_youtube_vos.yaml -ws 12 -bs 1 -ckpt CHECKPOINT_PATH -ng 8 Link Link 55.32

Training

First, download the Kinetics-400 pretrained weights of Video Swin Transformer from this link. Note that these weights were originally published in video swin's original repo here.

Place the downloaded file inside your cloned repo directory as MTTR/pretrained_swin_transformer/swin_tiny_patch244_window877_kinetics400_1k.pth.

Next, the following commands can be used to train MTTR as described in our paper.

Note that it may be possible to run some of these commands on GPUs with less memory than the ones mentioned below by decreasing the batch-size -bs or window-size -ws parameters. However, changing these parameters may also affect the final performance of the model.

A2D-Sentences

  • The command for the following configuration was tested on 2 A6000 48GB GPUs:
Window Size Command
10 python main.py -rm train -c configs/a2d_sentences.yaml -ws 10 -bs 3 -ng 2
  • The command for the following configuration was tested on 3 RTX 3090 24GB GPUs:
Window Size Command
8 python main.py -rm train -c configs/a2d_sentences.yaml -ws 8 -bs 2 -ng 3

Refer-YouTube-VOS

  • The command for the following configuration was tested on 4 A6000 48GB GPUs:
Window Size Command
12 python main.py -rm train -c configs/refer_youtube_vos.yaml -ws 12 -bs 1 -ng 4
  • The command for the following configuration was tested on 8 RTX 3090 24GB GPUs.
Window Size Command
8 python main.py -rm train -c configs/refer_youtube_vos.yaml -ws 8 -bs 1 -ng 8

Note that this last configuration was not mentioned in our paper. However, it is more memory efficient than the original configuration (window size 12) while producing a model which is almost as good (J&F of 54.56 in our experiments).

JHMDB-Sentences

As explained in our paper JHMDB-Sentences is used exclusively for evaluation, so training is not supported at this time for this dataset.

[ICSE2020] MemLock: Memory Usage Guided Fuzzing

MemLock: Memory Usage Guided Fuzzing This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing

Cheng Wen 54 Jan 07, 2023
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations

💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily instal

DefTruth 142 Dec 25, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training.

Updates (2020/06/21) Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training. Pyr

1.3k Jan 04, 2023
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

浅梦 828 Jan 04, 2023
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023