Feature Detection Based Template Matching

Overview

Feature Detection Based Template Matching

The classification of the photos was made using the OpenCv template Matching method.

Installation

Use the package manager pip to install OpenCV and Matplotlib

pip install opencv-python
pip install matplotlib

Code Review

Loading Images

'''Taking all images that we want to classify for them'''
path= "..\\FeatureBasedTemplateMatching\\Class\\"
images = []
classname = []
image_list = os.listdir(path)

Creating Classes

'''Creating classes via image names'''
for clss in image_list:
    imgCurrent = cv2.imread(f'{path}{clss}',0)
    images.append(imgCurrent)
    classname.append(os.path.splitext(clss)[0])

Creating ORB Object

About ORB

'''Creating ORB object'''#Fast and Free to use
orb = cv2.ORB_create()

Finding all Decriptors

Computed descriptors. Output concatenated vectors of descriptors. Each descriptor is a 32-element vector, as returned by cv.ORB.descriptorSize, so the total size of descriptors will be numel(keypoints) * obj.descriptorSize(), i.e a matrix of size N-by-32 of class uint8, one row per keypoint.

'''Finding All Descriptors'''
def findDesc(images):
    descList = []
    for image in images:
        kp,desc = orb.detectAndCompute(image,None)
        descList.append(desc)
    return descList

Finding Detection Image ID

'''Finding image id via using descritor list'''
def findID(img, descList):
    kp2, desc2 = orb.detectAndCompute(img,None)
    bf = cv2.BFMatcher()
    matchList = []
    finalval = -1
    try:
        for des in descList:
            matches = bf.knnMatch(des,desc2,k=2)
            goodmatches = []
            for m, n in matches:
                if m.distance < 0.75 * n.distance:
                    goodmatches.append([m])
            matchList.append(len(goodmatches))
    except:
        pass
    if matchList:
        if max(matchList) > TRESHOLD:
            finalval = matchList.index(max(matchList))
    return finalval

Detection

'''Image that we want to detect'''
detection_image = cv2.imread("..\\FeatureBasedTemplateMatching\\10kmmatch.jpg")
img_gray = cv2.cvtColor(detection_image,cv2.COLOR_BGR2GRAY)


descList = findDesc(images)
id =findID(img_gray,descList)

if id != -1:
    cv2.putText(detection_image,classname[id],(50,50),cv2.FONT_HERSHEY_PLAIN,5,(255,0,0),3)

Output

alt text

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

License

MIT

Owner
Muhammet Erem
Muhammet Erem
Python Package for DataHerb: create, search, and load datasets.

The Python Package for DataHerb A DataHerb Core Service to Create and Load Datasets.

DataHerb 4 Feb 11, 2022
pyETT: Python library for Eleven VR Table Tennis data

pyETT: Python library for Eleven VR Table Tennis data Documentation Documentation for pyETT is located at https://pyett.readthedocs.io/. Installation

Tharsis Souza 5 Nov 19, 2022
2019 Data Science Bowl

Kaggle-2019-Data-Science-Bowl-Solution - Here i present my solution to kaggle 2019 data science bowl and how i improved it to win a silver medal in that competition.

Deepak Nandwani 1 Jan 01, 2022
Aggregating gridded data (xarray) to polygons

A package to aggregate gridded data in xarray to polygons in geopandas using area-weighting from the relative area overlaps between pixels and polygons. Check out the binder link above for a sample c

Kevin Schwarzwald 42 Nov 09, 2022
BasstatPL is a package for performing different tabulations and calculations for descriptive statistics.

BasstatPL is a package for performing different tabulations and calculations for descriptive statistics. It provides: Frequency table constr

Angel Chavez 1 Oct 31, 2021
Retentioneering 581 Jan 07, 2023
Display the behaviour of a realtime program with a scope or logic analyser.

1. A monitor for realtime MicroPython code This library provides a means of examining the behaviour of a running system. It was initially designed to

Peter Hinch 17 Dec 05, 2022
Active Learning demo using two small datasets

ActiveLearningDemo How to run step one put the dataset folder and use command below to split the dataset to the required structure run utils.py For ea

3 Nov 10, 2021
Very basic but functional Kakuro solver written in Python.

kakuro.py Very basic but functional Kakuro solver written in Python. It uses a reduction to exact set cover and Ali Assaf's elegant implementation of

Louis Abraham 4 Jan 15, 2022
Geospatial data-science analysis on reasons behind delay in Grab ride-share services

Grab x Pulis Detailed analysis done to investigate possible reasons for delay in Grab services for NUS Data Analytics Competition 2022, to be found in

Keng Hwee 6 Jun 07, 2022
Desafio 1 ~ Bantotal

Challenge 01 | Bantotal Please read the instructions for the challenge by selecting your preferred language below: Español Português License Copyright

Maratona Behind the Code 44 Sep 28, 2022
Spectacular AI SDK fuses data from cameras and IMU sensors and outputs an accurate 6-degree-of-freedom pose of a device.

Spectacular AI SDK examples Spectacular AI SDK fuses data from cameras and IMU sensors (accelerometer and gyroscope) and outputs an accurate 6-degree-

Spectacular AI 94 Jan 04, 2023
Streamz helps you build pipelines to manage continuous streams of data

Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelines that involve branching, joining, flow control, feedbac

Python Streamz 1.1k Dec 28, 2022
Data analysis and visualisation projects from a range of individual projects and applications

Python-Data-Analysis-and-Visualisation-Projects Data analysis and visualisation projects from a range of individual projects and applications. Python

Tom Ritman-Meer 1 Jan 25, 2022
Average time per match by division

HW_02 Unzip matches.rar to access .json files for matches. Get an API key to access their data at: https://developer.riotgames.com/ Average time per m

11 Jan 07, 2022
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022
Statistical Analysis 📈 focused on statistical analysis and exploration used on various data sets for personal and professional projects.

Statistical Analysis 📈 This repository focuses on statistical analysis and the exploration used on various data sets for personal and professional pr

Andy Pham 1 Sep 03, 2022
Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
Methylation/modified base calling separated from basecalling.

Remora Methylation/modified base calling separated from basecalling. Remora primarily provides an API to call modified bases for basecaller programs s

Oxford Nanopore Technologies 72 Jan 05, 2023
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.

Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis

Blei Lab 4.7k Jan 09, 2023