Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Overview

Nested Graph Neural Networks

About

Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance. It consists of a base GNN (usually a weak message-passing GNN) and an outer GNN. In NGNN, we extract a rooted subgraph around each node, and let the base GNN to learn a subgraph representation from the rooted subgraph, which is used as the root node's representation. Then, the outer GNN further learns a graph representation from these root node representations returned from the base GNN (in this paper, we simply let the outer GNN be a global pooling layer without graph convolution). NGNN is proved to be more powerful than 1-WL, being able to discriminate almost all r-regular graphs where 1-WL always fails. In contrast to other high-order GNNs, NGNN only incurs a constant time higher time complexity than its base GNN (given the rooted subgraph size is bounded). NGNN often shows immediate performance gains in real-world datasets when applying it to a weak base GNN.

Requirements

Stable: Python 3.8 + PyTorch 1.8.1 + PyTorch_Geometric 1.7.0 + OGB 1.3.1

Latest: Python 3.8 + PyTorch 1.9.0 + PyTorch_Geometric 1.7.2 + OGB 1.3.1

Install PyTorch

Install PyTorch_Geometric

Install OGB

Install rdkit by

conda install -c conda-forge rdkit

To run 1-GNN, 1-2-GNN, 1-3-GNN, 1-2-3-GNN and their nested versions on QM9, install k-gnn by executing

python setup.py install

under "software/k-gnn-master/".

Other required python libraries include: numpy, scipy, tqdm etc.

Usages

TU dataset

To run Nested GCN on MUTAG (with subgraph height=3 and base GCN #layers=4), type:

python run_tu.py --model NestedGCN --h 3 --layers 4 --node_label spd --use_rd --data MUTAG

To compare it with a base GCN model only, type:

python run_tu.py --model GCN --layers 4 --data MUTAG

To reproduce the added experiments with hyperparameter searching, type:

python run_tu.py --model GCN --search --data MUTAG 

python run_tu.py --model NestedGCN --h 0 --search --node_label spd --use_rd --data MUTAG

Replace with "--data all" and "--model all" to run all models (NestedGCN, NestedGraphSAGE, NestedGIN, NestedGAT) on all datasets.

QM9

We include the commands for reproducing the QM9 experiments in "run_all_targets_qm9.sh". Uncomment the corresponding command in this file, and then run

./run_all_targets_qm9.sh 0 11

to execute this command repeatedly for all 12 targets.

OGB molecular datasets

To reproduce the ogb-molhiv experiment, run

python run_ogb_mol.py --h 4 --num_layer 6 --save_appendix _h4_l6_spd_rd --dataset ogbg-molhiv --node_label spd --use_rd --drop_ratio 0.65 --runs 10 

When finished, to get the ensemble test result, run

python run_ogb_mol.py --h 4 --num_layer 6 --save_appendix _h4_l6_spd_rd --dataset ogbg-molhiv --node_label spd --use_rd --drop_ratio 0.65 --runs 10 --continue_from 100 --ensemble

To reproduce the ogb-molpcba experiment, run

python run_ogb_mol.py --h 3 --num_layer 4 --save_appendix _h3_l4_spd_rd --dataset ogbg-molpcba --subgraph_pooling center --node_label spd --use_rd --drop_ratio 0.35 --epochs 150 --runs 10

When finished, to get the ensemble test result, run

python run_ogb_mol.py --h 3 --num_layer 4 --save_appendix _h3_l4_spd_rd --dataset ogbg-molpcba --subgraph_pooling center --node_label spd --use_rd --drop_ratio 0.35 --epochs 150 --runs 10 --continue_from 150 --ensemble --ensemble_lookback 140

Simulation on r-regular graphs

To reproduce Appendix C Figure 3, run the following commands:

python run_simulation.py --n 10 20 40 80 160 320 640 1280 --save_appendix _node --N 10 --h 10

python run_simulation.py --n 10 20 40 80 160 320 640 1280 --save_appendix _graph --N 100 --h 10 --graph

The results will be saved in "results/simulation_node/" and "results/simulation_graph/".

Miscellaneous

We have tried our best to clean the code. We will keep polishing it after the author response. If you encounter any errors or bugs, please let us know in OpenReview. Hope you enjoy the code!

TODO

  1. Write a doc or plot a graph to explain the NGNN data structure defined in utils.py

  2. Make pretransform to NGNN data structure parallel.

Owner
Muhan Zhang
Assistant Professor at Peking University.
Muhan Zhang
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
This repository includes code of my study about Asynchronous in Frequency domain of GAN images.

Exploring the Asynchronous of the Frequency Spectra of GAN-generated Facial Images Binh M. Le & Simon S. Woo, "Exploring the Asynchronous of the Frequ

4 Aug 06, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

CrossFormer This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention. Introduction Existin

cheerss 238 Jan 06, 2023
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive

TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str

VITA lab at EPFL 39 Dec 25, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021