Pyeventbus: a publish/subscribe event bus

Overview

pyeventbus

https://travis-ci.org/n89nanda/pyeventbus.svg?branch=master

pyeventbus is a publish/subscribe event bus for Python 2.7.

  • simplifies the communication between python classes
  • decouples event senders and receivers
  • performs well threads, greenlets, queues and concurrent processes
  • avoids complex and error-prone dependencies and life cycle issues
  • makes code simpler
  • has advanced features like delivery threads, workers and spawning different processes, etc.
  • is tiny (3KB archive)

pyeventbus in 3 steps:

  1. Define events:

    class MessageEvent:
        # Additional fields and methods if needed
        def __init__(self):
            pass
    
  2. Prepare subscribers: Declare and annotate your subscribing method, optionally specify a thread mode:

    from pyeventbus import *
    
    @subscribe(onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    

    Register your subscriber. For example, if you want to register a class in Python:

    from pyeventbus import *
    
    class MyClass:
        def __init__(self):
            pass
    
        def register(self, myclass):
            PyBus.Instance().register(myclass, self.__class__.__name__)
    
    # then during initilization
    
    myclass = MyClass()
    myclass.register(myclass)
    
  3. Post events:

    from pyeventbus import *
    
    class MyClass:
        def __init__(self):
            pass
    
        def register(self, myclass):
            PyBus.Instance().register(myclass, self.__class__.__name__)
    
        def postingAnEvent(self):
            PyBus.Instance().post(MessageEvent())
    
     myclass = MyClass()
     myclass.register(myclass)
     myclass.postingAnEvent()
    

Modes: pyeventbus can run the subscribing methods in 5 different modes

  1. POSTING:

    Runs the method in the same thread as posted. For example, if an event is posted from main thread, the subscribing method also runs in the main thread. If an event is posted in a seperate thread, the subscribing method runs in the same seperate method
    
    This is the default mode, if no mode has been provided::
    
    @subscribe(threadMode = Mode.POSTING, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    
  2. PARALLEL:

    Runs the method in a seperate python thread::
    
    @subscribe(threadMode = Mode.PARALLEL, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    
  3. GREENLET:

    Runs the method in a greenlet using gevent library::
    
    @subscribe(threadMode = Mode.GREENLET, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    
  4. BACKGROUND:

    Adds the subscribing methods to a queue which is executed by workers::
    
    @subscribe(threadMode = Mode.BACKGROUND, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    
  1. CONCURRENT:

    Runs the method in a seperate python process::
    
    @subscribe(threadMode = Mode.CONCURRENT, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    

Adding pyeventbus to your project:

pip install pyeventbus

Example:

git clone https://github.com/n89nanda/pyeventbus.git

cd pyeventbus

virtualenv venv

source venv/bin/activate

pip install pyeventbus

python example.py

Benchmarks and Performance:

Refer /pyeventbus/tests/benchmarks.txt for performance benchmarks on CPU, I/O and networks heavy tasks.

Run /pyeventbus/tests/test.sh to generate the same benchmarks.

Performance comparison between all the modes with Python and Cython

alternate text

Inspiration

Inspired by Eventbus from greenrobot: https://github.com/greenrobot/EventBus
You might also like...
Code for the paper
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

CVPRW 2021: How to calibrate your event camera
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Comments
  • Same method name for multiple subscribers bug

    Same method name for multiple subscribers bug

    Please see the code below. To summarize:

    • Define one event
    • Define two subscriber listening for the event above. Each subscriber has a listener method with the name on_event
    • Each of the subscriber classes above defines an instance field, but with unique name (self.something in the first class, self.something2 in the second class)
    • Define another class that posts an event

    Run this scenario and get the error below:

    Exception in thread thread-on_event:
    Traceback (most recent call last):
      File "C:\Anaconda2\envs\python\lib\threading.py", line 801, in __bootstrap_inner
        self.run()
      File "C:\Anaconda2\envs\python\lib\site-packages\pyeventbus\pyeventbus.py", line 112, in run
        self.method(self.subscriber, self.event)
      File "C:/FractureID/projects/python/ui/spectraqc/PyEventBusBug.py", line 16, in on_event
        print (self.something)
    AttributeError: Subscriber2 instance has no attribute 'something'
    
    Exception in thread thread-on_event:
    Traceback (most recent call last):
      File "C:\Anaconda2\envs\python\lib\threading.py", line 801, in __bootstrap_inner
        self.run()
      File "C:\Anaconda2\envs\python\lib\site-packages\pyeventbus\pyeventbus.py", line 112, in run
        self.method(self.subscriber, self.event)
      File "C:/FractureID/projects/python/ui/spectraqc/PyEventBusBug.py", line 26, in on_event
        print (self.something_else)
    AttributeError: Subscriber1 instance has no attribute 'something_else'
    
    

    It complains about the variable in class two not having the attribute in the first class and the other way around.

    If I change on of the on_event to something else like on_event2 then the issue is gone.

    from pyeventbus import *
    
    
    class SomeEvent:
        def __init__(self):
            pass
    
    
    class Subscriber1:
        def __init__(self):
            self.something = 'First subscriber'
            PyBus.Instance().register(self, self.__class__.__name__)
    
        @subscribe(threadMode=Mode.PARALLEL, onEvent=SomeEvent)
        def on_event(self, event):
            print (self.something)
    
    
    class Subscriber2:
        def __init__(self):
            self.something_else = 'Second subscriber'
            PyBus.Instance().register(self, self.__class__.__name__)
    
        @subscribe(threadMode=Mode.PARALLEL, onEvent=SomeEvent)
        def on_event(self, event):
            print (self.something_else)
    
    
    class PyEventBusBug:
    
        def __init__(self):
            Subscriber1()
            Subscriber2()
            PyBus.Instance().post(SomeEvent())
    
    
    if __name__ == "__main__":
        PyEventBusBug()
    
    
    bug 
    opened by ddanny 0
  • Doesn't even start on Windows because 2000 threads is apparently too much

    Doesn't even start on Windows because 2000 threads is apparently too much

      File "C:\Python27\lib\site-packages\pyeventbus\pyeventbus.py", line 116, in subscribe
        bus = PyBus.Instance()
      File "C:\Python27\lib\site-packages\pyeventbus\Singleton.py", line 30, in Instance
        self._instance = self._decorated()
      File "C:\Python27\lib\site-packages\pyeventbus\pyeventbus.py", line 24, in __init__
        for worker in [lambda: self.startWorkers() for i in range(self.num_threads)]: worker()
      File "C:\Python27\lib\site-packages\pyeventbus\pyeventbus.py", line 24, in <lambda>
        for worker in [lambda: self.startWorkers() for i in range(self.num_threads)]: worker()
      File "C:\Python27\lib\site-packages\pyeventbus\pyeventbus.py", line 30, in startWorkers
        worker.start()
      File "C:\Python27\lib\threading.py", line 736, in start
        _start_new_thread(self.__bootstrap, ())
    thread.error: can't start new thread
    

    See also: https://stackoverflow.com/a/1835043/2583080

    bug 
    opened by PawelTroka 4
Releases(0.2)
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022
DeepFill v1/v2 with Contextual Attention and Gated Convolution, CVPR 2018, and ICCV 2019 Oral

Generative Image Inpainting An open source framework for generative image inpainting task, with the support of Contextual Attention (CVPR 2018) and Ga

2.9k Dec 16, 2022
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
DeLag: Detecting Latency Degradation Patterns in Service-based Systems

DeLag: Detecting Latency Degradation Patterns in Service-based Systems Replication package of the work "DeLag: Detecting Latency Degradation Patterns

SEALABQualityGroup @ University of L'Aquila 2 Mar 24, 2022
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

3k Jan 08, 2023
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023