Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Overview

Summary

This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zhang, Yiran Shen*, Bowen Du, Guangrong Zhao, Lizhen Cui Cui Lizhen, Hongkai Wen.

The paper can be found here.

Introduction

In this paper, We propose new event-based gait recognition approaches basing on two different representations of the event-stream, i.e., graph and image-like representations, and use Graph-based Convolutional Network (GCN) and Convolutional Neural Networks (CNN) respectively to recognize gait from the event-streams. The two approaches are termed as EV-Gait-3DGraph and EV-Gait-IMG. To evaluate the performance of the proposed approaches, we collect two event-based gait datasets, one from real-world experiments and the other by converting the publicly available RGB gait recognition benchmark CASIA-B.

If you use any of this code or data, please cite the following publication:

@inproceedings{wang2019ev,
  title={EV-gait: Event-based robust gait recognition using dynamic vision sensors},
  author={Wang, Yanxiang and Du, Bowen and Shen, Yiran and Wu, Kai and Zhao, Guangrong and Sun, Jianguo and Wen, Hongkai},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={6358--6367},
  year={2019}
}
@article{wang2021event,
 title={Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks},
    author={Wang, Yanxiang and Zhang, Xian and Shen, Yiran and Du, Bowen and Zhao,     Guangrong and Lizhen, Lizhen Cui Cui and Wen, Hongkai},
   journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
    year={2021},
   publisher={IEEE}
   }

Requirements

  • Python 3.x
  • Conda
  • cuda
  • PyTorch
  • numpy
  • scipy
  • PyTorch Geometric
  • TensorFlow
  • Matlab (with Computer Vision Toolbox and Image Processing Toolbox for nonuniform grid downsample)

Installation

Data

We use both data collected in real-world experiments(called DVS128-Gait) and converted from publicly available RGB gait databases(called EV-CASIA-B). Here we offer the code and data for the DVS128-Gait.

DVS128-Gait DATASET

we use a DVS128 Dynamic Vision Sensor from iniVation operating at 128*128 pixel resolution.

we collect two dataset: DVS128-Gait-Day and DVS128-Gait-Night, which were collected under day and night lighting condition respectively.

For each lighting condition, we recruited 20 volunteers to contribute their data in two experiment sessions spanning over a few days. In each session, the participants were asked to repeat walking in front of the DVS128 sensor for 100 times.

Run EV-Gait-3DGraph

  • download DVS128-Gait-Day dataset, you will get DVS128-Gait-Day folder which contains train and test data, place DVS128-Gait-Day folder to the data/ folder.

  • event downsample using matlab:

    1. open Matlab
    2. go to matlab_downsample
    3. run main.m. This will generate the data/DVS128-Gait-Day/downsample folder which contains the non-uniform octreeGrid filtering data .
  • or directly download the downsampled data from this link:

    https://pan.baidu.com/s/1OKKvrhid929DakSxsjT7XA , extraction code: ceb1

    Then unzip it to the data/DVS128-Gait-Day/downsample folder.

  • generate graph representation for event, the graph data will be generated in data/DVS128-Gait-Day/graph folder:

    cd generate_graph
    python mat2graph.py
    
  • Download the pretrained model to the trained_model folder:

    https://pan.baidu.com/s/1X7eytUDWAtKS4bk0rjbs6g , extraction code: b7z7

  • run EV-Gait-3DGraph model with the pretrained model:

    cd EV-Gait-3DGraph
    python test_3d_graph.py --model_name EV_Gait_3DGraph.pkl
    

    The parameter--model_name refers to the downloaded pretrained model name.

  • train EV-Gait-3DGraph from scratch:

    cd EV-Gait-3DGraph
    nohup python -u train_3d_graph.py --epoch 110 --cuda 0 > train_3d_graph.log 2>&1 &
    

    the traning log would be created at log/train.log.

    parameters of train_3d_graph.py

    • --batch_size: default 16
    • --epoch: number of iterations, default 150
    • --cuda: specify the cuda device to use, default 0

Run EV-Gait-IMG

  • generate the image-like representation

    cd EV-Gait-IMG
    python make_hdf5.py
    
  • Download the pretrained model to the trained_model folder:

    https://pan.baidu.com/s/1xNbYUYYVPTwwjXeQABjmUw , extraction code: g5k2

    we provide four well trained model for four image-like representations presented in the paper.

    • EV_Gait_IMG_four_channel.pkl
    • EV_Gait_IMG_counts_only_two_channel.pkl
    • EV_Gait_IMG_time_only_two_channel.pkl
    • EV_Gait_IMG_counts_and_time_two_channel.pkl
  • run EV-Gait-IMG model with the pretrained model:

    We provide four options for --img_type to correctly test the corresponding image-like representation

    • four_channel : All four channels are considered, which is the original setup of the image-like representation

      python test_gait_cnn.py --img_type four_channel --model_name EV_Gait_IMG_four_channel.pkl
      
    • counts_only_two_channel : Only the two channels accommodating the counts of positive or negative events are kept

      python test_gait_cnn.py --img_type counts_only_two_channel --model_name EV_Gait_IMG_counts_only_two_channel.pkl
      
    • time_only_two_channel : Only the two channels holding temporal characteristics are kept

      python test_gait_cnn.py --img_type time_only_two_channel --model_name EV_Gait_IMG_time_only_two_channel.pkl
      
    • counts_and_time_two_channel : The polarity of the events is removed

      python test_gait_cnn.py --img_type counts_and_time_two_channel --model_name EV_Gait_IMG_counts_and_time_two_channel.pkl
      

    The parameter --model_name refers to the downloaded pretrained model name.

  • train EV-Gait-IMG from scratch:

    nohup python -u train_gait_cnn.py --img_type counts_only_two_channel --epoch 50 --cuda 1 --batch_size 128 > counts_only_two_channel.log 2>&1 &
    

    parameters of test_gait_cnn.py

    • --batch_size: default 128
    • --epoch: number of iterations, default 50
    • --cuda: specify the cuda device to use, default 0
    • --img_type: specify the type of image-like representation to train the cnn. Four options are provided according to the paper.
      • four_channel : All four channels are considered, which is the original setup of the image-like representation
      • counts_only_two_channel : Only the two channels accommodating the counts of positive or negative events are kept.
      • time_only_two_channel : Only the two channels holding temporal characteristics are kept.
      • counts_and_time_two_channel : The polarity of the events is removed.
Owner
zhangxian
Student
zhangxian
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022
Adaptive Denoising Training (ADT) for Recommendation.

DenoisingRec Adaptive Denoising Training for Recommendation. This is the pytorch implementation of our paper at WSDM 2021: Denoising Implicit Feedback

Wenjie Wang 51 Dec 30, 2022
Codes for paper "KNAS: Green Neural Architecture Search"

KNAS Codes for paper "KNAS: Green Neural Architecture Search" KNAS is a green (energy-efficient) Neural Architecture Search (NAS) approach. It contain

90 Dec 22, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
Wav2Vec for speech recognition, classification, and audio classification

Soxan در زبان پارسی به نام سخن This repository consists of models, scripts, and notebooks that help you to use all the benefits of Wav2Vec 2.0 in your

Mehrdad Farahani 140 Dec 15, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Junjie Hu 13 Dec 10, 2022
Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching

Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching This is our attempt of the shared task on Quan

Manav Nitin Kapadnis 12 Jul 08, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

1 SNAS4MTF This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 5 Sep 21, 2022
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022