Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Overview

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

📥 Download Datasets
📥 Download Trained Models

INTRODUCTION

TH2ZH (Thai-to-Simplified Chinese) and TH2EN (Thai-to-English) are cross-lingual summarization (CLS) datasets. The source articles of these datasets are from TR-TPBS dataset, a monolingual Thai text summarization dataset. To create CLS dataset out of TR-TPBS, we used a neural machine translation service to translate articles into target languages. For some reasons, we were strongly recommended not to mention the name of the service that we used 🥺 . We will refer to the service we used as ‘main translation service’.

Cross-lingual summarization (cross-sum) is a task to summarize a given document written in one language to another language short summary.

crosslingual summarization

Traditional cross-sum approaches are based on two techniques namely early translation technique and late translation technique. Early translation can be explained easily as translate-then-summarize method. Late translation, in reverse, is summarize-then-translate method.

However, classical cross-sum methods tend to carry errors from monolingual summarization process or translation process to final cross-language output summary. Several end-to-end approaches have been proposed to tackle problems of traditional ones. Couple of end-to-end models are available to download as well.

DATASET CONSTRUCTION

💡 Important Note In contrast to Zhu, et al, in our experiment, we found that filtering out articles using RTT technique worsen the overall performance of the end-to-end models significantly. Therefore, full datasets are highly recommended.

We used TR-TPBS as source documents for creating cross-lingual summarization dataset. In the same way as Zhu, et al., we constructed Th2En and Th2Zh by translating the summary references into target languages using translation service and filtered out those poorly-translated summaries using round-trip translation technique (RTT). The overview of cross-lingual summarization dataset construction is presented in belowe figure. Please refer to the corresponding paper for more details on RTT.

crosslingual summarization In our experiment, we set 𝑇1 and 𝑇2 equal to 0.45 and 0.2 respectively, backtranslation technique filtered out 27.98% from Th2En and 56.79% documents from Th2Zh.

python3 src/tools/cls_dataset_construction.py \
--dataset th2en \
--input_csv path/to/full_dataset.csv \
--output_csv path/to/save/filtered_csv \
--r1 0.45 \
--r2 0.2
  • --dataset can be {th2en, th2zh}.
  • --r1 and --r2 are where you can set ROUGE score thresholds (r1 and r2 represent ROUGE-1 and ROUGE-2 respectively) for filtering (assumingly) poor translated articles.

Dataset Statistic

Click the file name to download.

File Number of Articles Size
th2en_full.csv 310,926 2.96 GB
th2zh_full.csv 310,926 2.81 GB
testset.csv 3,000 44 MB
validation.csv 3,000 43 MB

Data Fields

Please refer to th2enzh_data_exploration.ipynb for more details.

Column Description
th_body Original Thai body text
th_sum Original Thai summary
th_title Original Thai Article headline
{en/zh}_body Translated body text
{en/zh}_sum Translated summary
{en/zh}_title Translated article's headline
{en/zh}2th Back translation of{en/zh}_body
{en/zh}_gg_sum Translated summary (by Google Translation)
url URL to original article’s webpage
  • {th/en/zh}_title are only available in test set.
  • {en/zh}_gg_sum are also only available in test set. We (at the time this experiment took place) assumed that Google translation was better than the main translation service we were using. We intended to use these Google translated summaries as some kind of alternative summary references, but in the end, they never been used. We decided to make them available in the test set anyway, just in case the others find them useful.
  • {en/zh}_body were not presented during training end-to-end models. They were used only in early translation methods.

AVAILABLE TRAINED MODELS

Model Corresponding Paper Thai -> English Thai -> Simplified Chinese
Full Filtered Full Filtered
TNCLS Zhu et al., 2019 - Available - -
CLS+MS Zhu et al., 2019 Available - - -
CLS+MT Zhu et al., 2019 Available - Available -
XLS – RL-ROUGE Dou et al., 2020 Available - Available -

To evaluate these trained models, please refer to xls_model_evaluation.ipynb and ncls_model_evaluation.ipynb.

If you wish to evaluate the models with our test sets, you can use below script to create test files for XLS and NCLS models.

python3 src/tools/create_cls_test_manifest.py \
--test_csv_path path/to/testset.csv \
--output_dir path/to/save/testset_files \
--use_google_sum {true/false} \
--max_tokens 500 \
--create_ms_ref {true/false}
  • output_dir is path to directory that you want to save test set files
  • use_google_sum can be {true/false}. If true, it will select summary reference from columns {en/zh}_gg_sum. Default is false.
  • max_tokens number of maximum words in input articles. Default is 500 words. Too short or too long articles can significantly worsen performance of the models.
  • create_ms_ref whether to create Thai summary reference file to evaluate MS task in NCLS:CLS+MS model.

This script will produce three files namely test.CLS.source.thai.txt and test.CLS.target.{en/zh}.txt. test.CLS.source.thai.txt is used as a test file for cls task. test.CLS.target.{en/zh}.txt are the crosslingual summary reference for English and Chinese, they are used to evaluate ROUGE and BertScore. Each line is corresponding to the body articles in test.CLS.source.thai.txt.

🥳 We also evaluated MT tasks in XLS and NCLS:CLS+MT models. Please refers to xls_model_evaluation.ipynb and ncls_model_evaluation.ipynb for BLUE score results . For test sets that we used to evaluate MT task, please refer to data/README.md.

EXPERIMENT RESULTS

🔆 It has to be noted that all of end-to-end models reported in this section were trained on filtered datasets NOT full datasets. And for all end-to-end models, only `th_body` and `{en/zh}_sum` were present during training. We trained end-to-end models for 1,000,000 steps and selected model checkpoints that yielded the highest overall ROUGE scores to report the experiment.

In this experiment, we used two automatic evaluation matrices namely ROUGE and BertScore to assess the performance of CLS models. We evaluated ROUGE on Chinese text at word-level, NOT character level.

We only reported BertScore on abstractive summarization models. To evaluate the results with BertScore we used weights from ‘roberta-large’ and ‘bert-base-chinese’ pretrained models for Th2En and Th2Zh respectively.

Model Thai to English Thai to Chinese
ROUGE BertScore ROUGE BertScore
R1 R2 RL F1 R1 R2 RL F1
Traditional Approaches
Translated Headline 23.44 6.99 21.49 - 21.55 4.66 18.58 -
ETrans → LEAD2 51.96 42.15 50.01 - 44.18 18.83 43.84 -
ETrans → BertSumExt 51.85 38.09 49.50 - 34.58 14.98 34.84 -
ETrans → BertSumExtAbs 52.63 32.19 48.14 88.18 35.63 16.02 35.36 70.42
BertSumExt → LTrans 42.33 27.33 34.85 - 28.11 18.85 27.46 -
End-to-End Training Approaches
TNCLS 26.48 6.65 21.66 85.03 27.09 6.69 21.99 63.72
CLS+MS 32.28 15.21 34.68 87.22 34.34 12.23 28.80 67.39
CLS+MT 42.85 19.47 39.48 88.06 42.48 19.10 37.73 71.01
XLS – RL-ROUGE 42.82 19.62 39.53 88.03 43.20 19.19 38.52 72.19

LICENSE

Thai crosslingual summarization datasets including TH2EN, TH2ZH, test and validation set are licensed under MIT License.

ACKNOWLEDGEMENT

  • These cross-lingual datasets and the experiments are parts of Nakhun Chumpolsathien ’s master’s thesis at school of computer science, Beijing Institute of Technology. Therefore, as well, a great appreciation goes to his supervisor, Assoc. Prof. Gao Yang.
  • Shout out to Tanachat Arayachutinan for the initial data processing and for introducing me 麻辣烫, 黄焖鸡.
  • We would like to thank Beijing Engineering Research Center of High Volume Language Information Processing and Cloud Computing Applications for providing computing resources to conduct the experiment.
  • In this experiment, we used PyThaiNLP v. 2.2.4 to tokenize (on both word & sentence levels) Thai texts. For Chinese and English segmentation, we used Stanza.
Owner
Nakhun Chumpolsathien
I thought it was fun.
Nakhun Chumpolsathien
Machine Psychology: Python Generated Art

Machine Psychology: Python Generated Art A limited collection of 64 algorithmically generated artwork. Each unique piece is then given a title by the

Pixegami Team 67 Dec 13, 2022
An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations

FantasyBert English | 中文 Introduction An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations. You can imp

Fan 137 Oct 26, 2022
Machine translation models released by the Gourmet project

Gourmet Models Overview The Gourmet project has released several machine translation models to translate low-resource languages. This repository conta

Edinburgh NLP 5 Dec 08, 2021
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Python package for performing Entity and Text Matching using Deep Learning.

DeepMatcher DeepMatcher is a Python package for performing entity and text matching using deep learning. It provides built-in neural networks and util

461 Dec 28, 2022
Official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

This repository is the official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

vanint 101 Dec 30, 2022
Translates basic English sentences into the Huna language (hoo-NAH)

huna-translator The Huna Language Translates basic English sentences into the Huna language (hoo-NAH). The Huna constructed language was developed in

Miles Smith 0 Jan 20, 2022
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis

MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.

Neosapience 103 Dec 23, 2022
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022
Beyond Paragraphs: NLP for Long Sequences

Beyond Paragraphs: NLP for Long Sequences

AI2 338 Dec 02, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022
Research Code for NeurIPS 2020 Spotlight paper "Large-Scale Adversarial Training for Vision-and-Language Representation Learning": UNITER adversarial training part

VILLA: Vision-and-Language Adversarial Training This is the official repository of VILLA (NeurIPS 2020 Spotlight). This repository currently supports

Zhe Gan 109 Dec 31, 2022
AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

Microsoft 37 Nov 29, 2022
Code for using and evaluating SpanBERT.

SpanBERT This repository contains code and models for the paper: SpanBERT: Improving Pre-training by Representing and Predicting Spans. If you prefer

Meta Research 798 Dec 30, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Jan 03, 2023
GVT is a generic translation tool for parts of text on the PC screen with Text to Speak functionality.

GVT is a generic translation tool for parts of text on the PC screen with Text to Speech functionality. I wanted to create it because the existing tools that I experimented with did not satisfy me in

Nuked 1 Aug 21, 2022
A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode

Bloxflip Smart Bet A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode. https://bloxflip.com/crash. THIS

43 Jan 05, 2023
Checking spelling of form elements

Checking spelling of form elements. You can check the source files of external workflows/reports and configuration files

СКБ Контур (команда 1с) 15 Sep 12, 2022
用Resnet101+GPT搭建一个玩王者荣耀的AI

基于pytorch框架用resnet101加GPT搭建AI玩王者荣耀 本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"

冯泉荔 2.2k Jan 03, 2023
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023