Code for text augmentation method leveraging large-scale language models

Overview

HyperMix

Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation.

Getting Started

Installing Packages

The main depedencies can be installed via pip install -r requirements.txt.

Usage

The main code is run through main.py. Check out --help for full list of commands.

python main.py --help

The code will automatically use the first GPU device, if detected.

A typical command to run BERT-base 10 times on the 1% subsample set of the SST-2 dataset and computing the average of all run is as follows.

python main.py --datasets sst2 \
    --train-subsample 0.01f \
    --classifier transformers \
    --model-name bert-base-uncased \
    --num-trials 1 \
    --augmenter none \
    --save-dir out

The script will create a directory named out in the current working directory and save the script log as out/run.log. It will also save any augmentations created during the experiments (if any augmentation is enabled).

To test GPT3Mix, prepare an OpenAI API key as described at the bottom of this README file, then use the following command:

python main.py --datasets sst2 \
    --train-subsample 0.01f \
    --classifier transformers \
    --model-name bert-base-uncased \
    --num-trials 1 \
    --augmenter gpt3-mix \
    --save-dir out

Managing Seeds

In the command above, the script will automatically generate seeds for sampling data and optimizing models. The seed used to generate each individual seed is called "master seed" and can be set using --master-data-seed and --master-exp-seed options. As evident from the option names, they are responsible for sampling data and optimizing a freshly initialized models respectively.

Sometimes, we need to manually set the seeds and not rely on automatically generated seeds from the master seeds. Manually seeding can be achieved via --data-seeds option. If this option is given, the master data seed will be ignored. We only support manualy data seeding for now.

OpenAI Key

Store OpenAI API Key under the current working directory as a file named openai-key. When running the main script, it will automatically detect the api key.

API keys can be provided to the script by --api-key option (not recommended) or from a file named openai-key in the current working directory.

Other Notes

At the moment we only support data augmentation leveraging OpenAI GPT-3 (GPT3Mix), but we will release an update that supports HyperCLOVA as soon as it becomes available to the public (HyperMix).

Citation

To cite our code or work, please use the following bibtex:

@inproceedings{yoo2021gpt3mix,
	title = "GPT3Mix: Leveraging Large-scale Language Models for Text Augmentation",
	author = "Yoo, Kang Min  and
	  Park, Dongju  and
	  Kang, Jaewook  and
	  Lee, Sang-Woo  and
	  Park, Woomyoung",
	booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
	month = nov,
	year = "2021",
	publisher = "Association for Computational Linguistics",
	url = "https://aclanthology.org/2021.findings-emnlp.192",
	pages = "2225--2239",
}
Owner
NAVER AI
Official account of NAVER AI, Korea No.1 Industrial AI Research Group
NAVER AI
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022
This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini!

About CappuccinoJs This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini! Este conversor criar

Arthur Ottoni Ribeiro 48 Nov 15, 2022
A Python 3.6+ package to run .many files, where many programs written in many languages may exist in one file.

RunMany Intro | Installation | VSCode Extension | Usage | Syntax | Settings | About A tool to run many programs written in many languages from one fil

6 May 22, 2022
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.

Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models

Novetta 407 Jan 03, 2023
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
Generate a cool README/About me page for your Github Profile

Github Profile README/ About Me Generator 💯 This webapp lets you build a cool README for your profile. A few inputs + ~15 mins = Your Github Profile

Rahul Banerjee 179 Jan 07, 2023
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
WikiPron - a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary

WikiPron WikiPron is a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary, as well as a database of pronuncia

213 Jan 01, 2023
Text-Based zombie apocalyptic decision-making game in Python

Inspiration We shared university first year game coursework.[to gauge previous experience and start brainstorming] Adapted a particular nuclear fallou

Amin Sabbagh 2 Feb 17, 2022
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
Fastseq 基于ONNXRUNTIME的文本生成加速框架

Fastseq 基于ONNXRUNTIME的文本生成加速框架

Jun Gao 9 Nov 09, 2021
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
Transformer training code for sequential tasks

Sequential Transformer This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer archite

Meta Research 578 Dec 13, 2022
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables

Mortgage-Application-Analysis Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables: age, in

1 Jan 29, 2022