Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis

Overview

MLP Singer

Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.

Abstract

Recent developments in deep learning have significantly improved the quality of synthesized singing voice audio. However, prominent neural singing voice synthesis systems suffer from slow inference speed due to their autoregressive design. Inspired by MLP-Mixer, a novel architecture introduced in the vision literature for attention-free image classification, we propose MLP Singer, a parallel Korean singing voice synthesis system. To the best of our knowledge, this is the first work that uses an entirely MLP-based architecture for voice synthesis. Listening tests demonstrate that MLP Singer outperforms a larger autoregressive GAN-based system, both in terms of audio quality and synthesis speed. In particular, MLP Singer achieves a real-time factor of up to 200 and 3400 on CPUs and GPUs respectively, enabling order of magnitude faster generation on both environments.

Citation

Please cite this work as follows.

@misc{tae2021mlp,
      title={MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis}, 
      author={Jaesung Tae and Hyeongju Kim and Younggun Lee},
      year={2021},
}

Quickstart

  1. Clone the repository including the git submodule.

    git clone --recurse-submodules https://github.com/neosapience/mlp-singer.git
  2. Install package requirements.

cd mlp-singer
pip install -r requirements.txt
  1. To generate audio files with the trained model checkpoint, download the HiFi-GAN checkpoint along with its configuration file and place them in hifi-gan.

  2. Run inference using the following command. Generated audio samples are saved in the samples directory by default.

    python inference.py --checkpoint_path checkpoints/default/model.pt

Dataset

We used the Children Song Dataset, an open-source singing voice dataset comprised of 100 annotated Korean and English children songs sung by a single professional singer. We used only the Korean subset of the dataset to train the model.

You can train the model on any custom dataset of your choice, as long as it includes lyrics text, midi transcriptions, and monophonic a capella audio file triplets. These files should be titled identically, and should also be placed in specific directory locations as shown below.

├── data
│   └── raw
│       ├── mid
│       ├── txt
│       └── wav

The directory names correspond to file extensions. We have included a sample as reference.

Preprocessing

Once you have prepared the dataset, run

python -m data.serialize

from the root directory. This will create data/bin that contains binary files used for training. This repository already contains example binary files created from the sample in data/raw.

Training

To train the model, run

python train.py

This will read the default configuration file located in configs/model.json to initialize the model. Alternatively, you can also create a new configuration and train the model via

python train.py --config_path PATH/TO/CONFIG.json

Running this command will create a folder under the checkpoints directory according to the name field specified in the configuration file.

You can also continue training from a checkpoint. For example, to resume training from the provided pretrained model checkpoint, run

python train.py --checkpoint_path /checkpoints/default/model.pt

Unless a --config_path flag is explicitly provided, the script will read config.json in the checkpoint directory. In both cases, model checkpoints will be saved regularly according to the interval defined in the configuration file.

Inference

MLP Singer produces mel-spectrograms, which are then fed into a neural vocoder to generate raw waveforms. This repository uses HiFi-GAN as the vocoder backend, but you can also plug other vocoders like WaveGlow. To generate samples, run

python inference.py --checkpoint_path PATH/TO/CHECKPOINT.pt --song little_star

This will create .wav samples in the samples directory, and save mel-spectrogram files as .npy files in hifi-gan/test_mel_dirs.

You can also specify any song you want to perform inference on, as long as the song is present in data/raw. The argument to the --song flag should match the title of the song as it is saved in data/raw.

Note

For demo and internal experiments, we used a variant of HiFi-GAN that used different mel-spectrogram configurations. As such, the provided checkpoint for MLP Singer is different from the one referred to in the paper. Moreover, the vocoder used in the demo was further fine-tuned on the Children's Song Dataset.

Acknowledgements

This implementation was inspired by the following repositories.

License

Released under the MIT License.

Owner
Neosapience
Neosapience, an artificial being enabled by artificial intelligence, will soon be everywhere in our daily lives.
Neosapience
Abhijith Neil Abraham 2 Nov 05, 2021
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
Easy, fast, effective, and automatic g-code compression!

Getting to the meat of g-code. Easy, fast, effective, and automatic g-code compression! MeatPack nearly doubles the effective data rate of a standard

Scott Mudge 97 Nov 21, 2022
VampiresVsWerewolves - Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition

VampiresVsWerewolves Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition. Our Algorithm finish

Shawn 1 Jan 21, 2022
This github repo is for Neurips 2021 paper, NORESQA A Framework for Speech Quality Assessment using Non-Matching References.

NORESQA: Speech Quality Assessment using Non-Matching References This is a Pytorch implementation for using NORESQA. It contains minimal code to predi

Meta Research 36 Dec 08, 2022
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe

Florian Leuerer 26 May 27, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
A Python script which randomly chooses and prints a file from a directory.

___ ____ ____ _ __ ___ / _ \ | _ \ | _ \ ___ _ __ | '__| / _ \ | |_| || | | || | | | / _ \| '__| | | | __/ | _ || |_| || |_| || __

yesmaybenookay 0 Aug 06, 2021
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU

GPU Docker NLP Application Deployment Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU, to setup the enviroment on

Ritesh Yadav 9 Oct 14, 2022
BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese

Table of contents Introduction Using BARTpho with fairseq Using BARTpho with transformers Notes BARTpho: Pre-trained Sequence-to-Sequence Models for V

VinAI Research 58 Dec 23, 2022
Enterprise Scale NLP with Hugging Face & SageMaker Workshop series

Workshop: Enterprise-Scale NLP with Hugging Face & Amazon SageMaker Earlier this year we announced a strategic collaboration with Amazon to make it ea

Philipp Schmid 161 Dec 16, 2022
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

NEC Laboratories Europe 13 Sep 08, 2022
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
Code associated with the Don't Stop Pretraining ACL 2020 paper

dont-stop-pretraining Code associated with the Don't Stop Pretraining ACL 2020 paper Citation @inproceedings{dontstoppretraining2020, author = {Suchi

AI2 449 Jan 04, 2023
Fast topic modeling platform

The state-of-the-art platform for topic modeling. Full Documentation User Mailing List Download Releases User survey What is BigARTM? BigARTM is a pow

BigARTM 633 Dec 21, 2022
自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

ja-timex 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 概要 ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。

Yuki Okuda 116 Nov 09, 2022
Contains links to publicly available datasets for modeling health outcomes using speech and language.

speech-nlp-datasets Contains links to publicly available datasets for modeling various health outcomes using speech and language. Speech-based Corpora

Tuka Alhanai 77 Dec 07, 2022
Unsupervised intent recognition

INTENT author: steeve LAQUITAINE description: deployment pattern: currently batch only Setup & run git clone https://github.com/slq0/intent.git bash

sl 1 Apr 08, 2022