Algorithm to texture 3D reconstructions from multi-view stereo images

Overview

MVS-Texturing

Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structure from motion and multi-view stereo techniques, however, it is not limited to this setting.

The algorithm was published in Sept. 2014 on the European Conference on Computer Vision. Please refer to our project website (http://www.gcc.tu-darmstadt.de/home/proj/texrecon/) for the paper and further information.

Please be aware that while the interface of the texrecon application is relatively stable the interface of the tex library is currently subject to frequent changes.

Dependencies

The code and the build system have the following prerequisites:

  • cmake (>= 3.1)
  • git
  • make
  • gcc (>= 5.0.0) or a compatible compiler
  • libpng, libjpg, libtiff, libtbb

Furthermore the build system automatically downloads and compiles the following dependencies (so there is nothing you need to do here):

Compilation Build Status

  1. git clone https://github.com/nmoehrle/mvs-texturing.git
  2. cd mvs-texturing
  3. mkdir build && cd build && cmake ..
  4. make (or make -j for parallel compilation)

If something goes wrong during compilation you should check the output of the cmake step. CMake checks all dependencies and reports if anything is missing.

If you think that there is some problem with the build process on our side please tell us.

If you are trying to compile this under windows (which should be possible but we haven't checked it) and you feel like we should make minor fixes to support this better, you can also tell us.

Execution

As input our algorithm requires a triangulated 3D model and images that are registered against this model. One way to obtain this is to:

A quick guide on how to use these applications can be found on our project website.

By starting the application without any parameters and you will get a description of the expected file formats and optional parameters.

Troubleshooting

When you encounter errors or unexpected behavior please make sure to switch the build type to debug e.g. cmake -DCMAKE_BUILD_TYPE=DEBUG .., recompile and rerun the application. Because of the computational complexity the default build type is RELWITHDEBINFO which enables optimization but also ignores assertions. However, these assertions could give valuable insight in failure cases.

License, Patents and Citing

Our software is licensed under the BSD 3-Clause license, for more details see the LICENSE.txt file.

If you use our texturing code for research purposes, please cite our paper:

@inproceedings{Waechter2014Texturing,
  title    = {Let There Be Color! --- {L}arge-Scale Texturing of {3D} Reconstructions},
  author   = {Waechter, Michael and Moehrle, Nils and Goesele, Michael},
  booktitle= {Proceedings of the European Conference on Computer Vision},
  year     = {2014},
  publisher= {Springer},
}

Contact

If you have trouble compiling or using this software, if you found a bug or if you have an important feature request, please use the issue tracker of github: https://github.com/nmoehrle/mvs-texturing

For further questions you may contact us at mvs-texturing(at)gris.informatik.tu-darmstadt.de

Owner
Nils Moehrle
Nils Moehrle
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
An end-to-end project on customer segmentation

End-to-end Customer Segmentation Project Note: This project is in progress. Tools Used in This Project Prefect: Orchestrate workflows hydra: Manage co

Ocelot Consulting 8 Oct 06, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.

This repository is no longer maintained. Please use our new Softlearning package instead. Soft Actor-Critic Soft actor-critic is a deep reinforcement

Tuomas Haarnoja 752 Jan 07, 2023
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022