Course material for the Multi-agents and computer graphics course

Overview

TC2008B

Course material for the Multi-agents and computer graphics course.

Setup instructions

  • Strongly recommend using a custom conda environment.
  • Install python 3.8 in the environment: conda install python=3.8 Using 3.8 for compatibility reasons. Maybe 3.9 or 3.10 are compatible with all the packages, but will have to check.
  • Installing mesa: pip install mesa
  • Installing flask to mount the service: pip install flask
  • By this moment, the environment will have all the packages needed for the project to run.

Instructions to run the local server and the Unity application

  • Run either the python web server: Server/tc2008B_server.py, or the flask server: Server/tc2008B_flask.py. Flask is considerably easier to setup and use, and I strongly recommend its use over python's http.server module. Additionally, IBM cloud example used flask.
  • To run the python web server:
python tc2008B_server.py
  • To run a flask app:
export FLASK_APP=tc_2008B_flash.py
flask run
  • You can change the name of the app you want to run by changing the environment variable FLASK_APP.

  • Alternatively, if you used the following code in your flask server:

if __name__=='__main__':
    app.run(host="localhost", port=8585, debug=True)

you can run it using:

python tc2008B_flask.py
  • To run a flask app on a different host or port:
flask run --host=0.0.0.0 --port=8585
  • Either of these servers is what will run on the cloud.
  • Once the server is running, launch the Unity scene TC2008B that is in the folder: IntegrationTest.
  • The scene has two game objects: AgentController and AgentControllerUpdate. I left both so that different functionality can be tested: AgentController works with the response of the python web server, while AgentControllerUpdate works with the reponse from the flask server.
  • I updated the AgentController.cs code, and introduced AgentControllerUpdate.cs. Each script parses data differently, depending on the response from either the python web server, or from the flask server. The AgentController.cs script parses text data, while AgentControllerUpdate.cs parses JSON data. I strongly recommend that we use JSON data.
  • The scripts are listening to port 8585 (http://localhost:8585). Double check that your server is launching on that port; specially if you are using a flask server.
  • If the Unity application is not running, or has import issues, I included the Unity package that has the scene Sergio Ruiz provided.

Instruction to run the cloud server and Unity application

Installing dependencies, and locally running the sample

# ...first add the Cloud Foundry Foundation public key and package repository to your system
wget -q -O - https://packages.cloudfoundry.org/debian/cli.cloudfoundry.org.key | sudo apt-key add -
echo "deb https://packages.cloudfoundry.org/debian stable main" | sudo tee /etc/apt/sources.list.d/cloudfoundry-cli.list
# ...then, update your local package index, then finally install the cf CLI
sudo apt update
sudo apt install cf8-cli
  • To get the sample app running:
git clone https://github.com/IBM-Cloud/get-started-python
cd get-started-python
  • To run locally:
pip install -r requirements.txt
python hello.py

To deply the sample to the cloud

  • All the requiered files for the sample app to run are inside the IBMCloud folder.
  • We first need a manifest.yml file. The one provided in the example repository contains the following:
applications:
 - name: GetStartedPython
   random-route: true
   memory: 128M
  • You can use the Cloud Foundry CLI to deploy apps. Choose your API endpoint:
cf api 
   

   

Replace the API-endpoint in the command with an API endpoint from the following list:

URL Region
https://api.ng.bluemix.net US South
https://api.eu-de.bluemix.net Germany
https://api.eu-gb.bluemix.net United Kingdom
https://api.au-syd.bluemix.net Sydney
  • Login to your IBM Cloud account:
cf login
  • From within the get-started-python directory push your app to IBM Cloud:
cf push
  • This process can take a while. All the dependencies are downloaded and installed, and the app in started.
  • After you push the application, in the cloud dashboard you can see a new cloud foundry app.
  • This can take a minute. If there is an error in the deployment process you can use the command cf logs --recent to troubleshoot.
  • When deployment completes you should see a message indicating that your app is running. View your app at the URL listed in the output of the push command. You can also issue the cf apps.
  • With the cf apps command you can see the route for the app.

To deploy a custom app to the cloud

  • I created an app within the cloud foundry in the ibm cloud by following the document Manual IBM Cloud - Python.pdf.
  • Created an additional folder inside the IBMCloud folder, named boids, that contains the required files.
  • In the manifest.yml I renamed the name to the one I used for the app in cloud foundry. From GetStartedPython to Boids.
  • Then, modified the ProcFile file as follows:
web: python tc2008B_flask.py
  • Modified the setup.py file, but I do not think it matters.
  • Then changed to the boids folder, and used:
cf push
  • Then, update the url for the service in Unity with the url for the service that cloud foundry assigns.

Notes

  • Using VSCode to develop everything.
  • Although not stated in the requirements, Git needs to be installed on the system.
  • I am running windows, and using the WSL. I ran the server code in WSL, and the Unity client in windows. My WSL machine runs Ubuntu 20.
  • Using Thunder Client extension as a replacement for postman to test the apis.
  • Pip does not allow us to search anymore.
  • As of 2021-10-17, the WWWForm method to post from Unity to the web service still works with Unity 20.20.3.4. However, the support apparently is going away soon.
  • Using flask because it is ideal for building smaller applications. Django could be used, but since it is much more robust, the additional utilities were not needed for this project.
  • The demo app push process went rather smoothly, but for the boids app it did not. It took too long, and ended up failing with a timeout error. I issued the command again.
  • Timeout again. Modified the manifest, and tried again.
  • After that, the app failed when it tried to start. Apparently, numpy was missing from the requirements.

TO DO

  • [ x ] Add the mesa code instead of the Boids code.
  • [ x ] Check synchronization, clients, maybe in the cloud, most likely in flask
  • Check cloud documentation or ask for a course? Instances, connections, etc.

Dependencies

Handwritten Text Recognition (HTR) using TensorFlow 2.x

Handwritten Text Recognition (HTR) system implemented using TensorFlow 2.x and trained on the Bentham/IAM/Rimes/Saint Gall/Washington offline HTR data

Arthur Flôr 160 Dec 21, 2022
BNF Globalization Code (CVPR 2016)

Boundary Neural Fields Globalization This is the code for Boundary Neural Fields globalization method. The technical report of the method can be found

25 Apr 15, 2022
Brief idea about our project is mentioned in project presentation file.

Brief idea about our project is mentioned in project presentation file. You just have to run attendance.py file in your suitable IDE but we prefer jupyter lab.

Dhruv ;-) 3 Mar 20, 2022
原神风花节自动弹琴辅助

GenshinAutoPlayBalladsofBreeze 原神风花节自动弹琴辅助(已适配1920*1080分辨率) 本程序基于opencv图像识别技术,不存在任何封号。 因为正确率取决于你的cpu性能,10900k都不一定全对。 由于图像识别存在误差,根本无法确定出错时间。更不用说被检测到了。

晓轩 20 Oct 27, 2022
OCR-D-compliant page segmentation

ocrd_segment This repository aims to provide a number of OCR-D-compliant processors for layout analysis and evaluation. Installation In your virtual e

OCR-D 59 Sep 10, 2022
A program that takes in the hand gesture displayed by the user and translates ASL.

Interactive-ASL-Recognition Using the framework mediapipe made by google, OpenCV library and through self teaching, I was able to create a program tha

Riddhi Bajaj 3 Nov 22, 2021
The virtual calculator will be above the live streaming from your camera

The virtual calculator is above the live streaming from my camera usb , the program first detect my hand and in each frame calculate the distance between two finger ,if the distance is lower than the

gasbaoui mohammed al amine 5 Jul 01, 2022
Make OpenCV camera loops less of a chore by skipping the boilerplate and getting right to the interesting stuff

camloop Forget the boilerplate from OpenCV camera loops and get to coding the interesting stuff Table of Contents Usage Install Quickstart More advanc

Gabriel Lefundes 9 Nov 12, 2021
Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper.

EnergyExpenditure Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper. Additional data for replicating this s

Patrick S 42 Oct 26, 2022
OpenCV-Erlang/Elixir bindings

evision [WIP] : OS : arch Build Status Ubuntu 20.04 arm64 Ubuntu 20.04 armv7 Ubuntu 20.04 s390x Ubuntu 20.04 ppc64le Ubuntu 20.04 x86_64 macOS 11 Big

Cocoa 194 Jan 05, 2023
Pure Javascript OCR for more than 100 Languages 📖🎉🖥

Version 2 is now available and under development in the master branch, read a story about v2: Why I refactor tesseract.js v2? Check the support/1.x br

Project Naptha 29.2k Jan 05, 2023
Indonesian ID Card OCR using tesseract OCR

KTP OCR Indonesian ID Card OCR using tesseract OCR KTP OCR is python-flask with tesseract web application to convert Indonesian ID Card to text / JSON

Revan Muhammad Dafa 5 Dec 06, 2021
Opencv face recognition desktop application

Opencv-Face-Recognition Opencv face recognition desktop application Program developed by Gustavo Wydler Azuaga - 2021-11-19 Screenshots of the program

Gus 1 Nov 19, 2021
Using computer vision method to recognize and calcutate the features of the architecture.

building-feature-recognition In this repository, we accomplished building feature recognition using traditional/dl-assisted computer vision method. Th

4 Aug 11, 2022
Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Visual Behavior 86 Dec 28, 2022
Textboxes : Image Text Detection Model : python package (tensorflow)

shinTB Abstract A python package for use Textboxes : Image Text Detection Model implemented by tensorflow, cv2 Textboxes Paper Review in Korean (My Bl

Jayne Shin (신재인) 91 Dec 15, 2022
A tensorflow implementation of EAST text detector

EAST: An Efficient and Accurate Scene Text Detector Introduction This is a tensorflow re-implementation of EAST: An Efficient and Accurate Scene Text

2.9k Jan 02, 2023
An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Oriented Scene Text Detection

InceptText-Tensorflow An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Orien

GeorgeJoe 115 Dec 12, 2022
ocroseg - This is a deep learning model for page layout analysis / segmentation.

ocroseg This is a deep learning model for page layout analysis / segmentation. There are many different ways in which you can train and run it, but by

NVIDIA Research Projects 71 Dec 06, 2022