Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

Related tags

Deep LearningLDL
Overview

LDL

Paper | Supplementary Material

Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution
Jie Liang*, Hui Zeng*, and Lei Zhang.
In CVPR 2022 (Oral Presentation).

Abstract

Single image super-resolution (SISR) with generative adversarial networks (GAN) has recently attracted increasing attention due to its potentials to generate rich details. However, the training of GAN is unstable, and it often introduces many perceptually unpleasant artifacts along with the generated details. In this paper, we demonstrate that it is possible to train a GAN-based SISR model which can stably generate perceptually realistic details while inhibiting visual artifacts. Based on the observation that the local statistics (e.g., residual variance) of artifact areas are often different from the areas of perceptually friendly details, we develop a framework to discriminate between GAN-generated artifacts and realistic details, and consequently generate an artifact map to regularize and stabilize the model training process. Our proposed locally discriminative learning (LDL) method is simple yet effective, which can be easily plugged in off-the-shelf SISR methods and boost their performance. Experiments demonstrate that LDL outperforms the state-of-the-art GAN based SISR methods, achieving not only higher reconstruction accuracy but also superior perceptual quality on both synthetic and real-world datasets.

Overall illustration of the LDL:

illustration

For more details, please refer to our paper.

Getting started

  • Clone this repo.
git clone https://github.com/csjliang/LDL
cd LDL
  • Install dependencies. (Python 3 + NVIDIA GPU + CUDA. Recommend to use Anaconda)
pip install -r requirements.txt
  • Prepare the training and testing dataset by following this instruction.
  • Prepare the pre-trained models by following this instruction.

Training

First, check and adapt the yml file options/train/LDL/train_Synthetic_LDL.yml (or options/train/LDL/train_Realworld_LDL.yml for real-world image super-resolution), then

  • Single GPU:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python basicsr/train.py -opt options/train/LDL/train_Synthetic_LDL.yml --auto_resume

or

PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python realesrgan/train.py -opt options/train/LDL/train_Realworld_LDL.yml --auto_resume
  • Distributed Training:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=5678 basicsr/train.py -opt options/train/LDL/train_Synthetic_LDL.yml --launcher pytorch --auto_resume

or

PYTHONPATH=":${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train/LDL/train_Realworld_LDL.yml --launcher pytorch --auto_resume

Training files (logs, models, training states and visualizations) will be saved in the directory ./experiments/{name}

Testing

First, check and adapt the yml file options/test/LDL/test_LDL_Synthetic_x4.yml (or options/test/LDL/test_LDL_Realworld_x4.yml for real-world image super-resolution), then

  • Calculate metrics and save visual results for synthetic tasks:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python basicsr/test.py -opt options/test/LDL/test_LDL_Synthetic_x4.yml
  • Save visual results for real-world image super-resolution:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python basicsr/test.py -opt options/test/LDL/test_LDL_Realworld_x4.yml

Evaluating files (logs and visualizations) will be saved in the directory ./results/{name}

The Training and testing steps for scale=2 are similar.

Get Quantitative Metrics

First, check and adapt the settings of the files in metrics, then (take PSNR as an example) run

PYTHONPATH="./:${PYTHONPATH}" python scripts/metrics/table_calculate_psnr_all.py

Other metrics are similar.

License

This project is released under the Apache 2.0 license.

Citation

@inproceedings{jie2022LDL,
  title={Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution},
  author={Liang, Jie and Zeng, Hui and Zhang, Lei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Acknowledgement

This project is built based on the excellent BasicSR project.

Contact

Should you have any questions, please contact me via [email protected].

SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
High-Fidelity Pluralistic Image Completion with Transformers (ICCV 2021)

Image Completion Transformer (ICT) Project Page | Paper (ArXiv) | Pre-trained Models | Supplemental Material This repository is the official pytorch i

Ziyu Wan 243 Jan 03, 2023
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Deep Q-learning for playing chrome dino game

[PYTORCH] Deep Q-learning for playing Chrome Dino

Viet Nguyen 68 Dec 05, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023