Python with OpenCV - MediaPip Framework Hand Detection

Overview

Python HandDetection

Python with OpenCV - MediaPip Framework Hand Detection
Explore the docs »

Contact Me

About The Project

product-screenshot

It is a Computer vision package that makes it easy to operate image processing and AI functions. It mainly uses OpenCV and Mediapipe libraries.

Usage areas

  • Military Industry (submarine sonic wave scans), underwater imaging.
  • Security, criminal laboratories.
  • Medicine.
  • Clarification of structures such as tumors, vessels, Tomography, Ultrasound.
  • Robotics, traffic, astronomy, radar, newspaper and photography industry applications
  • Vb..

Here we just do hand identification with a computer camera based on the basics.

(back to top)

Built With

Libraries and programming language I use.

(back to top)

Getting Started

The materials you need to do this.

Installation

· Install PIP packages

! pip install opencv
! pip install mediapip
! pip install numpy

(back to top)

Usage

Basic Code Example

import cvzone
import cv2

cap = cv2.VideoCapture(0)
cap.set(3, 1280)
cap.set(4, 720)
detector = cvzone.HandDetector(detectionCon=0.5, maxHands=1)

while True:
    # Get image frame
    success, img = cap.read()

    # Find the hand and its landmarks
    img = detector.findHands(img)
    lmList, bbox = detector.findPosition(img)
    
    # Display
    cv2.imshow("Image", img)
    cv2.waitKey(1)

Finding How many finger are up

if lmList:
fingers = detector.fingersUp()
totalFingers = fingers.count(1)
cv2.putText(img, f'Fingers:{totalFingers}', (bbox[0] + 200, bbox[1] - 30),
            cv2.FONT_HERSHEY_PLAIN, 2, (0, 255, 0), 2)

(back to top)

My Hand Detection

my-handDetection

import mediapipe as mp
import cv2
import numpy as np 

mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands

cap = cv2.VideoCapture(0)
with mp_hands.Hands(min_detection_confidence=0.8, min_tracking_confidence=0.5) as hands:
    while cap.isOpened():
        ret, frame = cap.read()
        image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        image = cv2.flip(image, 1)
        image.flags.writeable = False
        results = hands.process(image)
        image.flags.writeable = True
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        #print(results)
        if results.multi_hand_landmarks:
            for num, hand in enumerate(results.multi_hand_landmarks):
                mp_drawing.draw_landmarks(image, hand, mp_hands.HAND_CONNECTIONS,
                                          mp_drawing.DrawingSpec(color=(217, 133, 0), thickness=2, circle_radius=4),
                                          mp_drawing.DrawingSpec(color=(105, 0, 101), thickness=2, circle_radius=2),)
                cv2.imshow('HandTracking', image)
                if cv2.waitKey(10) & 0xFF == ord('q'):
                    break
cap.release()
cv2.destroyAllWindows()
mp_drawing.DrawingSpec()

Contact

Twitter - @filokipatisi
E-Mail - GMAIL
Linkedin - oguzzmuslu

(back to top)

Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
A keras implementation of ENet (abandoned for the foreseeable future)

ENet-keras This is an implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from ENet-training (lua-t

Pavlos 115 Nov 23, 2021
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
Semi-Supervised Learning with Ladder Networks in Keras. Get 98% test accuracy on MNIST with just 100 labeled examples !

Semi-Supervised Learning with Ladder Networks in Keras This is an implementation of Ladder Network in Keras. Ladder network is a model for semi-superv

Divam Gupta 101 Sep 07, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023