Python rubik's cube solver

Overview

py-rubik_solver

Python solver for a rubik's cube

This program makes a 3D representation of a rubiks cube and solves it step by step.

solving the cube image

Usage

To use this program you need to execute the following commands

  • For 3D visualizations:

    python visualizer.py

  • For statistics:

    python stats.py

Requirements

To use this program you need to install python 3.8.10 or later (although it will probably work on python 3.7) You will also need a recent version of numpy and vpython 7 or later, those can be installed with:

pip install numpy vpython

Implementation

This project is separated in different files, each implementing a different functionality. The content and functionality of each of these files is the following:

configs.py

This file contains general configuration parameters mostly related to the visual representation of the cube:

  • The default colors
  • The number of fps
  • The time taken to reproduce each move
  • Time to wait between moves
  • Speed factor

cube.py

This file contains the Cube class, which implements a data structure for storing the pieces of the cube and some functions for rotating the faces of the cube. It also implements the possibility to shuffle the cube on creation and the possibility of recording a list of moves made in the cube, this is used for generating a solution.

The main functions implemented in this class are:

  • move(move, n=1, record=True): where move should be a string representing the face to move and n is the number of 90 degree rotations to perform (2 is half turn and 3 or -1 is a turn to the other side). The codes used for the move are:

    • "U", "F", "R", "B", "L", "D" for individual faces.
    • "UD", "FB", "RL" for the middle faces.
    • "UU", "FF", "RR" for rotations of the whole cube along this axis.
  • rotate(axis, n=1): this has the same effect as using move with "UU", "FF", "RR" but these moves are never recorded.

  • is_solved(): checks whether the cube equals the solved cube. Keep in mind that this function will return False even if the cube is solved but faces a different way.

  • copy(): creates a deep_copy of the cube. The copy is completely independent of the original cube.

cube_3d.py

This file implements the Cube3D class, which directly inherits from the Cube class. This class overrides the __init__ and move functions to first create all the cubes necessary to represent the rubiks cube in 3D and then animate them each time any face is moved.

cube_solver.py

This file implements the CubeSolver class, which acts as an abstract class for all the other solving algorithms. It only takes care of taking some measures for statistics.

simple_solver.py

This is the first solving algorithm implemented, it's the usual beginer algorithm for anyone learning how to solve the rubiks cube. It's implemented on a really naive way, and it's far from optimal in terms of the number of steps of the solution. It was just a proof of concept and my goal is to implement a better, more efficient version of this class in the future.

In my personal computer this algorithm takes 1.78 ms on average to compute a solution, and the solutions have 205.6 steps on average. Again these results are far from good, but this was just a proof of concept.

The process of the algorithm is separated in different steps, which are:

  • solve_first_cross: solves the cross on the UP face
  • solve_first_corners: solves the corners on the UP face
  • solve_second_row: solves the second "crown" or the second row
  • solve_second_cross: creates a cross on the DOWN face
  • orientate_2nd_cross: positions correctly the pieces inside the cross on the DOWN face
  • solve_second_corners: positions correctly the corners in the DOWN face
  • orientate_2nd_corners: rotates correctly the corners in the DOWN face
  • reorient_cube: rotates the whole cube so that the UP face is facing up and the FRONT face if facing front

stats.py

This file is used to compute some statistics of the cube solutions. At this point this file is used to compute:

  • The average time taken to generate a solution
  • The average number of steps of the generated solutions
  • Some data of the solving process

Keep in mind the data computed will probably change in the future.

util.py

In this file we store different lists and dictionaries used in the project such as a solved cube structure, a list of the directions, a function for generating random moves, ...

visualizer.py

This file is used to launch a 3D representation of the solving process of the cube. It also contains a function to check the progress of the solving algorithm.

Notes

In the future I'm planing to make more solving algorithms as well as an implementation for a physical robot that solves a given cube.

Use this code as you wish, just let me know if you do, I'll love to hear what you are up to!

If you have any doubts/comments/suggestions/anything please let my know via email at [email protected] or at the email in my profile.

Owner
Pablo QB
I'm a student of the double degree on Computer Engineering and Mathematics at UAM university. Here I upload some of my personal proyects just for fun.
Pablo QB
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval (arXiv) Repository to contain the code, models, data for end-to-end

225 Dec 25, 2022
Augmenting Anchors by the Detector Itself

Augmenting Anchors by the Detector Itself Introduction It is difficult to determine the scale and aspect ratio of anchors for anchor-based object dete

4 Nov 06, 2022
Indonesian ID Card OCR using tesseract OCR

KTP OCR Indonesian ID Card OCR using tesseract OCR KTP OCR is python-flask with tesseract web application to convert Indonesian ID Card to text / JSON

Revan Muhammad Dafa 5 Dec 06, 2021
Super Mario Game With Python

Super_Mario Hello all this is a simple python program which tries to use our body as a controller for the super mario game Here I have used media pipe

Adarsh Badagala 219 Nov 25, 2022
A curated list of resources dedicated to scene text localization and recognition

Scene Text Localization & Recognition Resources A curated list of resources dedicated to scene text localization and recognition. Any suggestions and

CarlosTao 1.6k Dec 22, 2022
An unofficial package help developers to implement ZATCA (Fatoora) QR code easily which required for e-invoicing

ZATCA (Fatoora) QR-Code Implementation An unofficial package help developers to implement ZATCA (Fatoora) QR code easily which required for e-invoicin

TheAwiteb 28 Nov 03, 2022
This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images.

Welcome This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images. Installation There are curren

8 Jul 29, 2022
Tesseract Open Source OCR Engine (main repository)

Tesseract OCR About This package contains an OCR engine - libtesseract and a command line program - tesseract. Tesseract 4 adds a new neural net (LSTM

48.4k Jan 09, 2023
A Screen Translator/OCR Translator made by using Python and Tesseract, the user interface are made using Tkinter. All code written in python.

About An OCR translator tool. Made by me by utilizing Tesseract, compiled to .exe using pyinstaller. I made this program to learn more about python. I

Fauzan F A 41 Dec 30, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Subramanyam 76 Dec 06, 2022
Image processing using OpenCv

Image processing using OpenCv Write a program that opens the webcam, and the user selects one of the following on the video: ✅ If the user presses the

M.Najafi 4 Feb 18, 2022
scene-linear test images

Scene-Referred Image Collection A collection of OpenEXR Scene-Referred images, encoded as max 2048px width, DWAA 80 compression. All exrs are encoded

Gralk Klorggson 7 Aug 25, 2022
Isearch (OSINT) 🔎 Face recognition reverse image search on Instagram profile feed photos.

isearch is an OSINT tool on Instagram. Offers a face recognition reverse image search on Instagram profile feed photos.

Malek salem 20 Oct 25, 2022
Implementation of EAST scene text detector in Keras

EAST: An Efficient and Accurate Scene Text Detector This is a Keras implementation of EAST based on a Tensorflow implementation made by argman. The or

Jan Zdenek 208 Nov 15, 2022
A curated list of papers and resources for scene text detection and recognition

Awesome Scene Text A curated list of papers and resources for scene text detection and recognition The year when a paper was first published, includin

Jan Zdenek 43 Mar 15, 2022
A pkg stiching around view images(4-6cameras) to generate bird's eye view.

AVP-BEV-OPEN Please check our new work AVP_SLAM_SIM A pkg stiching around view images(4-6cameras) to generate bird's eye view! View Demo · Report Bug

Xinliang Zhong 37 Dec 01, 2022
M-LSDを用いて四角形を検出し、射影変換を行うサンプルプログラム

M-LSD-warpPerspective-Example M-LSDを用いて四角形を検出し、射影変換を行うサンプルプログラムです。 Requirements OpenCV 3.4.2 or Later tensorflow 2.4.1 or Later Usage 実行方法は以下です。 pytho

KazuhitoTakahashi 9 Oct 14, 2022
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Abdulazeez Jimoh 1 Jan 01, 2022