ETL flow framework based on Yaml configs in Python

Overview

logo

ETL framework based on Yaml configs in Python

Supported Python Versions License Code style: black

A light framework for creating data streams. Setting up streams through configuration in the Yaml file. There is a schedule, task pools, concurrency limitation. Works quickly, does not require a lot of resources. Runs on Windows and Linux. Flow run in parallel via threading library. Internally SQLite Database. Native data transformation. There is a web interface.

At the moment there are connectors to sources

  • CSV file
  • SQLite
  • Postgres
  • MySQL
  • Yandex Metrika Management API
  • Yandex Metrika Stats API
  • Yandex Metrika Logs API
  • Yandex Direct API
  • Yandex Direct Report API
  • Criteo
  • Google Sheets

Storages

  • Save to csv file
  • Clickhouse

Documentation

Requirements

  • python >=3.9
  • virtual environment

Settings

It is highly recommended to install in a virtual environment.

Flowmaster needs a home, '{HOME}/FlowMaster' is the default,
but you can lay foundation somewhere else if you prefer
(optional)

For Windows

setx FLOWMASTER_HOME "{YOUR_PATH}"

For Linux

export FLOWMASTER_HOME={YOUR_PATH}

Installing

pip install flowmaster==0.7.1

# For install web UI.
pip install flowmaster[webui]==0.7.1

# Optional libraries.
pip install flowmaster[clickhouse,postgres,mysql,yandexdirect,yandexmetrika,criteo,googlesheets]==0.7.1

Run

flowmaster run --help
flowmaster run

WEB UI

http://localhost:8822

CHANGELOG

Support

Telegram support chat

Author

Pavel Maksimov

My contacts Telegram, Facebook

Удачи тебе, друг! Поставь звездочку ;)

You might also like...
signac-flow - manage workflows with signac
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.
Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.

Data lineage made simple, reliable, and automated. Effortlessly track the flow of data, understand dependencies and analyze impact. Features Visualiza

Randomisation-based inference in Python based on data resampling and permutation.

Randomisation-based inference in Python based on data resampling and permutation.

Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather than invoking the Python interpreter, Tuplex generates optimized LLVM bytecode for the given pipeline and input data set.

BioMASS - A Python Framework for Modeling and Analysis of Signaling Systems
BioMASS - A Python Framework for Modeling and Analysis of Signaling Systems

Mathematical modeling is a powerful method for the analysis of complex biological systems. Although there are many researches devoted on produ

 PyChemia, Python Framework for Materials Discovery and Design
PyChemia, Python Framework for Materials Discovery and Design

PyChemia, Python Framework for Materials Discovery and Design PyChemia is an open-source Python Library for materials structural search. The purpose o

wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information
wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information

Python based Wikidata framework for easy dataframe extraction wikirepo is a Python package that provides a framework to easily source and leverage sta

PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams

PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams Motivation When dataset freshness is critical, the annotating of high speed

Comments
  •  No such file or directory: '/home/ubuntu/FlowMaster/pools.yaml'

    No such file or directory: '/home/ubuntu/FlowMaster/pools.yaml'

    Привет, очень хороший проект, однако столкнулся со следующей проблемой при устанвоке библиотеки

    1. с ванильным python pip такого пакета вообще не видно
    2. при установке через conda установка проходит замечательно, однако при запуске получаю
    (base) [email protected]:~/FlowMaster$ flowmaster run
    Traceback (most recent call last):
      File "/home/ubuntu/miniforge3/bin/flowmaster", line 5, in <module>
        from flowmaster.__main__ import app
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/__main__.py", line 9, in <module>
        import flowmaster.cli.notebook
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/cli/notebook.py", line 5, in <module>
        from flowmaster.service import (
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/service.py", line 11, in <module>
        from flowmaster.operators.etl.policy import ETLNotebook
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/operators/etl/__init__.py", line 3, in <module>
        from flowmaster.operators.etl.providers.abstract import ProviderAbstract, ExportAbstract
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/operators/etl/providers/__init__.py", line 4, in <module>
        from flowmaster.operators.etl.providers.criteo import CriteoProvider
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/operators/etl/providers/criteo/__init__.py", line 2, in <module>
        from flowmaster.operators.etl.providers.criteo.export import (
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/operators/etl/providers/criteo/export.py", line 8, in <module>
        from flowmaster.executors import SleepIteration
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/executors/__init__.py", line 16, in <module>
        from flowmaster.pool import pools
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/pool.py", line 106, in <module>
        pools_dict = YamlHelper.parse_file(str(Settings.POOL_CONFIG_FILEPATH))
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/utils/yaml_helper.py", line 14, in parse_file
        with open(path, "rb") as f:
    FileNotFoundError: [Errno 2] No such file or directory: '/home/ubuntu/FlowMaster/pools.yaml'
    

    Что я делаю не так?(

    opened by micweeks 1
Releases(0.7.1)
  • 0.7.1(Aug 29, 2021)

    • prevented planned of tasks from one instance of the operator class
    • fixed error GeneratorExit
    • fixed transform array type for Clickhouse loader
    Source code(tar.gz)
    Source code(zip)
  • 0.6.1(Jun 22, 2021)

    Redesigned executor

    New

    • add politics 'time_limit_seconds_from_worktime', 'soft_time_limit_seconds'.
    • add provider 'flowmaster'

    Fixing

    • fix schedule (interval seconds mode)
    • add logging 'loguru'
    • fix clear_statuses_of_lost_items
    • fix allow_execute_flow
    • change command 'db reset'

    There are backward incompatible changes

    • new field 'expires_utc' in FlowItem
    • rename command 'run' to 'run_local' and rename command 'run_thread' to 'run'
    • add new class ExecutorIterationTask.
    • change, moving and rename class ThreadExecutor to ThreadAsyncExecutor.
    • change and rename class SleepTask to SleepIteration.
    • change and rename class TaskPool to NextIterationInPools.
    • ETLOperator return ExecutorIterationTask.
    • rename func order_flow to ordering_flow_tasks.
    • rename func start_executor to sync_executor.
    • rename field FlowItem.config_hash to FlowItem.notebook_hash
    • change FLOW_CONFIGS_DIR and rename FLOW_CONFIGS_DIR to NOTEBOOKS_DIR
    • rename objects config to notebook
    • add class Settings
    Source code(tar.gz)
    Source code(zip)
  • 0.3.1(May 15, 2021)

  • 0.2.2(May 13, 2021)

Owner
Павел Максимов
Python Data Engineer, Python Developer, ETL, Разработчик рекомендательных систем
Павел Максимов
Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data

Statistical_Modelling Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data Statistical Methods for Decision Ma

Avnika Mehta 1 Jan 27, 2022
Analytical view of olist e-commerce in Brazil

Analysis of E-Commerce Public Dataset by Olist The objective of this project is to propose an analytical view of olist e-commerce in Brazil. For this

Gurpreet Singh 1 Jan 11, 2022
Gaussian processes in TensorFlow

Website | Documentation (release) | Documentation (develop) | Glossary Table of Contents What does GPflow do? Installation Getting Started with GPflow

GPflow 1.7k Jan 06, 2023
Exploratory data analysis

Exploratory data analysis An Exploratory data analysis APP TAPIWA CHAMBOKO 🚀 About Me I'm a full stack developer experienced in deploying artificial

tapiwa chamboko 1 Nov 07, 2021
small package with utility functions for analyzing (fly) calcium imaging data

fly2p Tools for analyzing two-photon (2p) imaging data collected with Vidrio Scanimage software and micromanger. Loading scanimage data relies on scan

Hannah Haberkern 3 Dec 14, 2022
BigDL - Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems

Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems.

Vo Cong Thanh 1 Jan 06, 2022
track your GitHub statistics

GitHub-Stalker track your github statistics 👀 features find new followers or unfollowers find who got a star on your project or remove stars find who

Bahadır Araz 34 Nov 18, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
Validation and inference over LinkML instance data using souffle

Translates LinkML schemas into Datalog programs and executes them using Souffle, enabling advanced validation and inference over instance data

Linked data Modeling Language 7 Aug 07, 2022
Implementation in Python of the reliability measures such as Omega.

OmegaPy Summary Simple implementation in Python of the reliability measures: Omega Total, Omega Hierarchical and Omega Hierarchical Total. Name Link O

Rafael Valero Fernández 2 Apr 27, 2022
Predictive Modeling & Analytics on Home Equity Line of Credit

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python) HMEQ Data Set In this assignment we will use Python to examine a data set

Dhaval Patel 1 Jan 09, 2022
Data processing with Pandas.

Processing-data-with-python This is a simple example showing how to use Pandas to create a dataframe and the processing data with python. The jupyter

1 Jan 23, 2022
Efficient matrix representations for working with tabular data

Efficient matrix representations for working with tabular data

QuantCo 70 Dec 14, 2022
InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family.

CRISPRanalysis InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family. In this work, we present a workflow

2 Jan 31, 2022
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
Tools for the analysis, simulation, and presentation of Lorentz TEM data.

ltempy ltempy is a set of tools for Lorentz TEM data analysis, simulation, and presentation. Features Single Image Transport of Intensity Equation (SI

McMorran Lab 1 Dec 26, 2022
Extract data from a wide range of Internet sources into a pandas DataFrame.

pandas-datareader Up to date remote data access for pandas, works for multiple versions of pandas. Installation Install using pip pip install pandas-d

Python for Data 2.5k Jan 09, 2023
Data imputations library to preprocess datasets with missing data

Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.

Elton Law 329 Dec 05, 2022
An experimental project I'm undertaking for the sole purpose of increasing my Python knowledge

5ePy is an experimental project I'm undertaking for the sole purpose of increasing my Python knowledge. #Goals Goal: Create a working, albeit lightwei

Hayden Covington 1 Nov 24, 2021
A utility for functional piping in Python that allows you to access any function in any scope as a partial.

WithPartial Introduction WithPartial is a simple utility for functional piping in Python. The package exposes a context manager (used with with) calle

Michael Milton 1 Oct 26, 2021