Code for the paper "Are Sixteen Heads Really Better than One?"

Overview

Are Sixteen Heads Really Better than One?

This repository contains code to reproduce the experiments in our paper Are Sixteen Heads Really Better than One?.

Prerequisite

First, you will need python >=3.6 with pytorch>=1.0. Then, clone our forks of fairseq (for MT experiments) and pytorch-pretrained-BERT (for BERT):

# Fairseq
git clone https://github.com/pmichel31415/fairseq
# Pytorch pretrained BERT
git clone https://github.com/pmichel31415/pytorch-pretrained-BERT
cd pytorch-pretrained-BERT
git checkout paul
cd ..

If you are running into issues with pytorch-pretrained-BERT (because you have another version installed globally for instance), check out this work around (thanks @insop).

You will also need sacrebleu to evaluate BLEU score (pip install sacrebleu).

Ablation experiments

BERT

Running

bash experiments/BERT/heads_ablation.sh MNLI

Will fine-tune a pretrained BERT on MNLI (stored in ./models/MNLI) and perform the individual head ablation experiment from Section 3.1 in the paper alternatively you can run the experiment with CoLA, MRCP or SST-2 as a task in place of MNLI.

MT

You can obtain the pretrained WMT model from this link from the fairseq repo now this link. Use the Moses tokenizer and subword-nmt in conjunction to the BPE codes provided with the pretrained model to prepair any input file you want. Then run:

bash experiments/MT/wmt_ablation.sh $BPE_SEGMENTED_SRC_FILE $DETOKENIZED_REF_FILE

Systematic Pruning Experiments

BERT

To iteratively prune 10% heads in order of increasing importance run

bash experiments/BERT/heads_pruning.sh MNLI --normalize_pruning_by_layer

This will reuse the BERT model fine-tuned if you have run the ablation experiment before (otherwise it'll just fine-tune it for you). The output of this is very verbose, but you can get the gist of the result by calling grep "strategy\|results" -A1 on the output.

WMT

Similarly, just run:

bash experiments/MT/prune_wmt.sh $BPE_SEGMENTED_SRC_FILE $DETOKENIZED_REF_FILE

You might want to change the paths in the experiment files to point to the binarized fairseq dataset on whic you want to estimate importance scores.

Owner
Paul Michel
Laplace Postdoctoral Chair in Data Science at École Normale Supérieure, Paris
Paul Michel
Implementation of the Hybrid Perception Block and Dual-Pruned Self-Attention block from the ITTR paper for Image to Image Translation using Transformers

ITTR - Pytorch Implementation of the Hybrid Perception Block (HPB) and Dual-Pruned Self-Attention (DPSA) block from the ITTR paper for Image to Image

Phil Wang 17 Dec 23, 2022
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Chung-Ming Chien 1k Dec 30, 2022
OpenChat: Opensource chatting framework for generative models

OpenChat is opensource chatting framework for generative models.

Hyunwoong Ko 427 Jan 06, 2023
An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

Khalid Saifullah 37 Sep 05, 2022
Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles

Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles (TASLP 2022)

Zhuosheng Zhang 3 Apr 14, 2022
Python code for ICLR 2022 spotlight paper EViT: Expediting Vision Transformers via Token Reorganizations

Expediting Vision Transformers via Token Reorganizations This repository contain

Youwei Liang 101 Dec 26, 2022
A python package to fine-tune transformer-based models for named entity recognition (NER).

nerblackbox A python package to fine-tune transformer-based language models for named entity recognition (NER). Resources Source Code: https://github.

Felix Stollenwerk 13 Jul 30, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
IMDB film review sentiment classification based on BERT's supervised learning model.

IMDB film review sentiment classification based on BERT's supervised learning model. On the other hand, the model can be extended to other natural language multi-classification tasks.

Paris 1 Apr 17, 2022
Use the power of GPT3 to execute any function inside your programs just by giving some doctests

gptrun Don't feel like coding today? Use the power of GPT3 to execute any function inside your programs just by giving some doctests. How is this diff

Roberto Abdelkader Martínez Pérez 11 Nov 11, 2022
Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe NHV in the future.

Fast (GAN Based Neural) Vocoder Chinese README Todo Submit demo Support NHV Discription Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe include N

Zhengxi Liu (刘正曦) 134 Dec 16, 2022
A python package for deep multilingual punctuation prediction.

This python library predicts the punctuation of English, Italian, French and German texts. We developed it to restore the punctuation of transcribed spoken language.

Oliver Guhr 27 Dec 22, 2022
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
Automated question generation and question answering from Turkish texts using text-to-text transformers

Turkish Question Generation Offical source code for "Automated question generation & question answering from Turkish texts using text-to-text transfor

Open Business Software Solutions 29 Dec 14, 2022
Spokestack is a library that allows a user to easily incorporate a voice interface into any Python application with a focus on embedded systems.

Welcome to Spokestack Python! This library is intended for developing voice interfaces in Python. This can include anything from Raspberry Pi applicat

Spokestack 133 Sep 20, 2022
This repository has a implementations of data augmentation for NLP for Japanese.

daaja This repository has a implementations of data augmentation for NLP for Japanese: EDA: Easy Data Augmentation Techniques for Boosting Performance

Koga Kobayashi 60 Nov 11, 2022
nlp-tutorial is a tutorial for who is studying NLP(Natural Language Processing) using Pytorch

nlp-tutorial is a tutorial for who is studying NLP(Natural Language Processing) using Pytorch. Most of the models in NLP were implemented with less than 100 lines of code.(except comments or blank li

Tae-Hwan Jung 11.9k Jan 08, 2023
Guide to using pre-trained large language models of source code

Large Models of Source Code I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe

Vincent Hellendoorn 947 Dec 28, 2022
Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).

XLM-EMO: Multilingual Emotion Prediction in Social Media Text Abstract Detecting emotion in text allows social and computational scientists to study h

MilaNLP 35 Sep 17, 2022