Utility for Google Text-To-Speech batch audio files generator. Ideal for prompt files creation with Google voices for application in offline IVRs

Overview

Google Text-To-Speech Batch Prompt File Maker

forthebadge forthebadge

Are you in the need of IVR prompts, but you have no voice actors? Let Google talk your prompts like a pro! This repository contains a tool for generating Google Text-To-Speech audio files in batch. It is ideal for offline prompts creation with Google voices for application in IVRs

In order to use this repository, clone the contents in your local environment with the following console command:

git clone https://github.com/ponchotitlan/google_text-to-speech_prompt_maker.git

Once cloned, follow the next steps for environment setup:

1) GCP account setup

Before adjusting up the contents of this project, it is neccesary to setup the Cloud Text-to-Speech API in your Google Cloud project:

  1. Follow the official documentation for activating this API and creating a Service Account
  2. Generate a JSON key associated to this Service Account
  3. Save this JSON key file in the same location as the contents of this repository

2) CSV and YAML files

Prepare a CSV document with the texts that you want to convert into prompt audio files. The CSV must have the following structure:

    <FILE NAME WITHOUT THE EXTENSION> , <PROMPT TEXT OR COMPLIANT SSML GRAMMAR>

An Excel export to CSV format should be enough for rendering a compatible structure, ever since the text within a cell is dumped between quotes if it contains spaces. An example of a compliant file with SSML prompts would look like the following:

    sample_prompt_01,"<speak>Welcome to ACME. How can I help you today?</speak>"
    sample_prompt_02,"<speak>Press 1 for sales. <break time=200ms/>Press 2 for Tech Support. <break time=200ms/>Or stay in the line for agent support</speak>"
    ...

Additionally, prepare a YAML document with the structure mentioned in the setup.yaml file included in this repository. The fields are the following:

# CSV format is: FILE_NAME , PROMPT_CONTENT
csv_prompts_file: <my_csv_file.csv>

google_settings:
    # ROUTE TO THE JSON KEY ASSOCIATED TO GCP. IF THE ROUTE HAS SPACES, ADD QUOTES TO THE VALUE
    JSON_key: <my_key.json>

    # PROMPT TYPE. ALLOWED VALUES ARE:
    # normal | SSML
    prompt_type: SSML

    # FILE FORMAT. ALLOWED VALUES ARE:
    # wav | mp3
    output_audio_format: wav

    # COMPLIANT LANGUAGE CODE. SEE https://cloud.google.com/text-to-speech/docs/voices FOR COMPATIBLE CODES
    language_code: es-US

    # COMPLIANT VOICE NAME. SEE https://cloud.google.com/text-to-speech/docs/voices FOR COMPATIBLE NAMES
    voice_name: es-US-Wavenet-C

    # COMPLIANT VOICE GENDER. SEE https://cloud.google.com/text-to-speech/docs/voices FOR COMPATIBLE GENDERS WITH THE SELECTED VOICE ABOVE
    voice_gender: MALE

    # COMPLIANT AUDIO ENCODING. SUPPORTED TYPES ARE:
    # AUDIO_ENCODING_UNSPECIFIED | LINEAR16 | MP3 | OGG_OPUS
    audio_encoding: LINEAR16

3) Dependencies installation

Install the requirements in a virtual environment with the following command:

pip install -r requirements.txt

4) Inline calling

The usage of the script requires the following inline elements:

usage: init.py [-h] [-b BATCH] configurationYAML

Batch prompt generation with Google TTS services

positional arguments:
  configurationYAML     YAML file with operation settings

optional arguments:
  -h, --help            show this help message and exit
  -b BATCH, --batch BATCH
                        Amount of rows in the CSV file to process at the same
                        time. Suggested max value is 100. Default is 10

An example is:

py init.py setup.yaml

The command prompt will show logs based on the status of each row:

✅ Prompt sample_prompt_04.WAV created successfully!
✅ Prompt sample_prompt_01.WAV created successfully!
✅ Prompt sample_prompt_03.WAV created successfully!
✅ Prompt sample_prompt_02.WAV created successfully!

The corresponding audio files will be saved in the same location where this script is executed.

5) Encoding for Cisco CVP Audio Elements

Unfortunately, Google Text-To-Speech service does not support the compulsory 8-bit μ-law encoding as per the Python SDK documentation (I am currently working on a Java version which does support this encoding. This option might be released in the Python SDK in the future). However, there are many online services such as this one for achieving the aforementioned. Audacity can also be used for the purpose. Follow this tutorial for compatible file conversion steps. There's a more straightforward tool which has been proven useful for me in order to process batch files with the CVP compatible settings.

The resulting files can later be uploaded into the Tomcat server for usage within a design in Cisco CallStudio. The route within the CVP Windows Server VM is the following:

    C:\Cisco\CVP\VXMLServer\Tomcat\webapps\CVP\audio

Please refer to the Official Cisco Documentation for more information.

Crafted with ❤️ by Alfonso Sandoval - Cisco

You might also like...
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

voice2json is a collection of command-line tools for offline speech/intent recognition on Linux
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

A Python module made to simplify the usage of Text To Speech and Speech Recognition.
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

Command Line Text-To-Speech using Google TTS
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

Releases(v1.2.0)
Owner
Ponchotitlán
💻 ☕ 🥃 Let's talk about networks coding, automation and orchestration autour a cup of coffee, and a sip of tequila;
Ponchotitlán
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode.

WordleSolver An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode. How to use the program Copy this proje

Akil Selvan Rajendra Janarthanan 3 Mar 02, 2022
keras implement of transformers for humans

keras implement of transformers for humans

苏剑林(Jianlin Su) 4.8k Jan 03, 2023
Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

Stat4ML Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP This is the first course from our trio courses: Statistics Foundatio

Omid Safarzadeh 83 Dec 29, 2022
A programming language with logic of Python, and syntax of all languages.

Pytov The idea was to take all well known syntaxes, and combine them into one programming language with many posabilities. Installation Install using

Yuval Rosen 14 Dec 07, 2022
test

Lidar-data-decode In this project, you can decode your lidar data frame(pcap file) and make your own datasets(test dataset) in Windows without any hug

46 Dec 05, 2022
A python wrapper around the ZPar parser for English.

NOTE This project is no longer under active development since there are now really nice pure Python parsers such as Stanza and Spacy. The repository w

ETS 49 Sep 12, 2022
Chinese Named Entity Recognization (BiLSTM with PyTorch)

BiLSTM-CRF for Name Entity Recognition PyTorch version A PyTorch implemention of Bi-LSTM-CRF model for Chinese Named Entity Recognition. 使用 PyTorch 实现

5 Jun 01, 2022
gaiic2021-track3-小布助手对话短文本语义匹配复赛rank3、决赛rank4

决赛答辩已经过去一段时间了,我们队伍ac milan最终获得了复赛第3,决赛第4的成绩。在此首先感谢一些队友的carry~ 经过2个多月的比赛,学习收获了很多,也认识了很多大佬,在这里记录一下自己的参赛体验和学习收获。

102 Dec 19, 2022
A telegram bot to translate 100+ Languages

🔥 GOOGLE TRANSLATER 🔥 The owner would not be responsible for any kind of bans due to the bot. • ⚡ INSTALLING ⚡ • • 🔰 Deploy To Railway 🔰 • • ✅ OFF

Aɴᴋɪᴛ Kᴜᴍᴀʀ 5 Dec 20, 2021
Scene Text Retrieval via Joint Text Detection and Similarity Learning

This is the code of "Scene Text Retrieval via Joint Text Detection and Similarity Learning". For more details, please refer to our CVPR2021 paper.

79 Nov 29, 2022
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

Ian 1 Jan 15, 2022
Simple multilingual lemmatizer for Python, especially useful for speed and efficiency

Simplemma: a simple multilingual lemmatizer for Python Purpose Lemmatization is the process of grouping together the inflected forms of a word so they

Adrien Barbaresi 70 Dec 29, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 464 Jan 04, 2023
Longformer: The Long-Document Transformer

Longformer Longformer and LongformerEncoderDecoder (LED) are pretrained transformer models for long documents. ***** New December 1st, 2020: Longforme

AI2 1.6k Dec 29, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling This repository contains PyTorch evaluation code, training code and pretrain

Facebook Research 94 Oct 26, 2022
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx

Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha

Greg Ver Steeg 592 Dec 18, 2022
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"

Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua

Timo Schick 1.4k Dec 30, 2022
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022