PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

Overview

PyDeepFakeDet

An integrated and scalable library for Deepfake detection research.

Introduction

PyDeepFakeDet is an integrated and scalable Deepfake detection tool developed by Fudan Vision and Learning Lab. The goal is to provide state-of-the-art Deepfake detection Models as well as interfaces for the training and evaluation of new Models on commonly used Deepfake datasets.

This repository includes implementations of both CNN-based and Transformer-based methods:

Model Zoo and Baselines

The baseline Models on three versions of FF-DF dataset are provided.

Method RAW C23 C40 Model
ResNet50 97.61 94.87 84.95 RAW / C23 / C40
Xception 97.84 95.24 86.27 RAW / C23 / C40
EfficientNet-b4 97.89 95.61 87.12 RAW / C23 / C40
Meso4 85.14 77.14 60.13 RAW / C23 / C40
MesoInception4 95.45 84.13 71.31 RAW / C23 / C40
GramNet 97.65 95.16 86.21 RAW / C23 / C40
F3Net 99.95 97.52 90.43 RAW / C23 / C40
MAT 97.90 95.59 87.06 RAW / C23 / C40
ViT 96.72 93.45 82.97 RAW / C23 / C40
M2TR 99.50 97.93 92.89 RAW / C23 / C40

The baseline Models on Celeb-DF is also available.

Method Celeb-DF Model
ResNet50 98.51 CelebDF
Xception 99.05 CelebDF
EfficientNet-b4 99.44 CelebDF
Meso4 73.04 CelebDF
MesoInception4 75.87 CelebDF
GramNet 98.67 CelebDF
F3Net 96.47 CelebDF
MAT 99.02 CelebDF
ViT 96.73 CelebDF
M2TR 99.76 CelebDF

Installation

  • We use Python == 3.9.0, torch==1.11.0, torchvision==1.12.0.

  • Install the required packages by:

    pip install -r requirements.txt

Data Preparation

Please follow the instructions in DATASET.md to prepare the data.

Quick Start

Specify the path of your local dataset in ./configs/resnet50.yaml, and then run:

python run.py --cfg resnet50.yaml

Visualization tools

Please refer to VISUALIZE.md for detailed instructions.

Contributors

PyDeepFakeDet is written and maintained by Wenhao Ouyang, Chao Zhang, Zhenxin Li, and Junke Wang.

License

PyDeepFakeDet is released under the MIT license.

Citations

@inproceedings{wang2021m2tr,
  title={M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection},
  author={Wang, Junke and Wu, Zuxuan and Ouyang, Wenhao and Han, Xintong and Chen, Jingjing and Lim, Ser-Nam and Jiang, Yu-Gang},
  booktitle={ICMR},
  year={2022}
}
Owner
Junke, Wang
I'm a first-year Ph.D. student in the school of computer science at Fudan University, supervised by Prof. Zuxuan Wu and Prof. Yu-Gang Jiang.
Junke, Wang
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini!

ConversorDeMedidas_CapuccinoGelado Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini! Requirem

Arthur Ottoni Ribeiro 48 Nov 15, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 02, 2022
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
An energy estimator for eyeriss-like DNN hardware accelerator

Energy-Estimator-for-Eyeriss-like-Architecture- An energy estimator for eyeriss-like DNN hardware accelerator This is an energy estimator for eyeriss-

HEXIN BAO 2 Mar 26, 2022
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023