A set of tools to analyse the output from TraDIS analyses

Overview

QuaTradis (Quadram TraDis)

A set of tools to analyse the output from TraDIS analyses

Contents

Introduction

The QuaTradis pipeline provides software utilities for the processing, mapping, and analysis of transposon insertion sequencing data. The pipeline was designed with the data from the TraDIS sequencing protocol in mind, but should work with a variety of transposon insertion sequencing protocols as long as they produce data in the expected format.

For more information on the TraDIS method, see http://bioinformatics.oxfordjournals.org/content/32/7/1109 and http://genome.cshlp.org/content/19/12/2308.

Installation

QuaTradis has the following dependencies:

Required dependencies

  • bwa
  • smalt
  • samtools
  • tabix

There are a number of ways to install QuaTradis and details are provided below. If you encounter an issue when installing QuaTradis please contact your local system administrator.

Bioconda

Install conda and enable the bioconda channel.

conda install -c bioconda quatradis=xxx

Docker

QuaTradis can be run in a Docker container. First install Docker, then pull the QuaTradis image from dockerhub:

docker pull quadraminstitute/quatradis

To use QuaTradis use a command like this (substituting in your directories), where your files are assumed to be stored in /home/ubuntu/data:

docker run --rm -it -v /home/ubuntu/data:/data quadraminstitute/quatradis bacteria_tradis -h

Running the tests

The test can be run with pytest from the tests directory. Alternatively you can use the make target from the top-level directory:

make test

Usage

QuaTradis provides functionality to:

  • detect TraDIS tags in a BAM file
  • add the tags to the reads
  • filter reads in a FastQ file containing a user defined tag
  • remove tags
  • map to a reference genome
  • create an insertion site plot file

The functions are available as standalone scripts or as perl modules.

Scripts

Executable scripts to carry out most of the listed functions are available in the bin:

  • check_tradis_tags - Prints 1 if tags are present in alignment file, prints 0 if not.
  • add_tradis_tags - Generates a BAM file with tags added to read strings.
  • filter_tradis_tags - Create a fastq file containing reads that match the supplied tag
  • remove_tradis_tags - Creates a fastq file containing reads with the supplied tag removed from the sequences
  • tradis_plot - Creates an gzipped insertion site plot
  • bacteria_tradis - Runs complete analysis, starting with a fastq file and produces mapped BAM files and plot files for each file in the given file list and a statistical summary of all files. Note that the -f option expects a text file containing a list of fastq files, one per line. This script can be run with or without supplying tags.

Note that default parameters are for comparative experiments, and will need to be modified for gene essentiality studies.

A help menu for each script can be accessed by running the script by adding with "--help".

Analysis Scripts

Three scripts are provided to perform basic analysis of TraDIS results in bin:

  • tradis_gene_insert_sites - Takes genome annotation in embl format along with plot files produced by bacteria_tradis and generates tab-delimited files containing gene-wise annotations of insert sites and read counts.
  • tradis_essentiality.R - Takes a single tab-delimited file from tradis_gene_insert_sites to produce calls of gene essentiality. Also produces a number of diagnostic plots.
  • tradis_comparison.R - Takes tab files to compare two growth conditions using edgeR. This analysis requires experimental replicates.

License

QuaTradis is free software, licensed under GPLv3.

Feedback/Issues

Please report any issues to the issues page or email [email protected]

Citation

If you use this software please cite:

"The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries", Barquist L, Mayho M, Cummins C, Cain AK, Boinett CJ, Page AJ, Langridge G, Quail MA, Keane JA, Parkhill J. Bioinformatics. 2016 Apr 1;32(7):1109-11. doi: 10.1093/bioinformatics/btw022. Epub 2016 Jan 21.

Comments
  • fix channel order in readme

    fix channel order in readme

    Channel order is important for bioconda to work correctly -- the conda-forge has to come first (which means higher priority when specified on the command line with -c). That might be why some users are getting pysam issues requiring a workaround.

    FYI might also want to consider suggesting --strict-channel-priority, see the new bioconda docs.

    opened by daler 1
  • Fixes for albatradis compatibility

    Fixes for albatradis compatibility

    Fixing name of analysis output files for consumption by albatradis.

    Fixing mistake when creating gene names during insertion site analysis.. Shouldn't have ignored underscores in the name.

    opened by maplesond 0
  • requirements.txt should not list bgzip

    requirements.txt should not list bgzip

    A followup to the discussion on the Bioconda PR: The requirements.txt file that you are using should not list bgzip. Names in requirements.txt refer to packages on PyPI, so if you list bgzip, you actually pull in a Python package named bgzip (that is meant to be used via import bgzip from within Python). It will not give you the bgzip binary that your project actually seems to want.

    You cannot list non-Python dependencies in requirements.txt so you can only list that dependency in the Conda recipe.

    opened by marcelm 0
  • Fixing problems running the job in docker.

    Fixing problems running the job in docker.

    The issue was that the mapping stage outputs files to the current working directory which may not have user permissions. The fix is to make sure mapping logs are output to the same place as all other output files.

    opened by maplesond 0
  • Nextflow pipeline to replace bacteria_tradis, and implementation of tradis_gene_insert_sites

    Nextflow pipeline to replace bacteria_tradis, and implementation of tradis_gene_insert_sites

    Adding nextflow to handle processing of multiple fastq files (similar to bacteria_tradis).

    Add the tradis_gene_insert_sites script, and associated functions under isp_analyse. Although there are still some very small diffs between this and old biotradis script in terms of ins_index and ins_count, which I still need to investigate.

    Renamed and refactored a few things.

    Added a few scripts to get closer to feature parity with old BioTradis.

    Tidied up README.

    opened by maplesond 0
  • problem with running tradis pipeline multiple

    problem with running tradis pipeline multiple

    Hello,

    When I try to run following command using quatradis:

    tradis pipeline multiple -v -n 12 -o quatradis_out fastqs_filtered_sizecut_all.txt genome.fa

    this error appears: Traceback (most recent call last): File "/home/jang/anaconda3/envs/mamba/envs/albatradis/bin/tradis", line 293, in main() File "/home/jang/anaconda3/envs/mamba/envs/albatradis/bin/tradis", line 285, in main args.func(args) File "/home/jang/anaconda3/envs/mamba/envs/albatradis/bin/tradis", line 202, in run_multiple_pipeline tradis.run_multi_tradis(args.fastqs, args.reference, File "/home/jang/anaconda3/envs/mamba/envs/albatradis/lib/python3.9/site-packages/quatradis/tradis.py", line 142, in run_multi_tradis pipeline = find_pipeline_file() File "/home/jang/anaconda3/envs/mamba/envs/albatradis/lib/python3.9/site-packages/quatradis/tradis.py", line 101, in find_pipeline_file if os.path.exists(exe_path): File "/home/jang/anaconda3/envs/mamba/envs/albatradis/lib/python3.9/genericpath.py", line 19, in exists os.stat(path) TypeError: stat: path should be string, bytes, os.PathLike or integer, not NoneType

    What I'm doing wrong?

    The same input files work smoothly in bacteria_tradis.

    Bests, Jan

    opened by gaworj 1
Owner
Quadram Institute Bioscience
Quadram Institute Bioscience
Hidden Markov Models in Python, with scikit-learn like API

hmmlearn hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and

2.7k Jan 03, 2023
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Jan 02, 2023
wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information

Python based Wikidata framework for easy dataframe extraction wikirepo is a Python package that provides a framework to easily source and leverage sta

Andrew Tavis McAllister 35 Jan 04, 2023
Project under the certification "Data Analysis with Python" on FreeCodeCamp

Sea Level Predictor Assignment You will anaylize a dataset of the global average sea level change since 1880. You will use the data to predict the sea

Bhavya Gopal 3 Jan 31, 2022
Tools for analyzing data collected with a custom unity-based VR for insects.

unityvr Tools for analyzing data collected with a custom unity-based VR for insects. Organization: The unityvr package contains the following submodul

Hannah Haberkern 1 Dec 14, 2022
Flenser is a simple, minimal, automated exploratory data analysis tool.

Flenser Have you ever been handed a dataset you've never seen before? Flenser is a simple, minimal, automated exploratory data analysis tool. It runs

John McCambridge 79 Sep 20, 2022
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.

Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis

Blei Lab 4.7k Jan 09, 2023
Larch: Applications and Python Library for Data Analysis of X-ray Absorption Spectroscopy (XAS, XANES, XAFS, EXAFS), X-ray Fluorescence (XRF) Spectroscopy and Imaging

Larch: Data Analysis Tools for X-ray Spectroscopy and More Documentation: http://xraypy.github.io/xraylarch Code: http://github.com/xraypy/xraylarch L

xraypy 95 Dec 13, 2022
Single-Cell Analysis in Python. Scales to >1M cells.

Scanpy – Single-Cell Analysis in Python Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It inc

Theis Lab 1.4k Jan 05, 2023
Analysis scripts for QG equations

qg-edgeofchaos Analysis scripts for QG equations FIle/Folder Structure eigensolvers.py - Spectral and finite-difference solvers for Rossby wave eigenf

Norman Cao 2 Sep 27, 2022
Package for decomposing EMG signals into motor unit firings, as used in Formento et al 2021.

EMGDecomp Package for decomposing EMG signals into motor unit firings, created for Formento et al 2021. Based heavily on Negro et al, 2016. Supports G

13 Nov 01, 2022
DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis.

DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis. The main goal of the package is to accelerate the process of computing estimates of forward reachable sets for nonlinear dy

2 Nov 08, 2021
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
Used for data processing in machine learning, and help us to construct ML model more easily from scratch

Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.

ShawnWang 0 Jul 05, 2022
Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Débora Mendes de Azevedo 1 Feb 03, 2022
A Pythonic introduction to methods for scaling your data science and machine learning work to larger datasets and larger models, using the tools and APIs you know and love from the PyData stack (such as numpy, pandas, and scikit-learn).

This tutorial's purpose is to introduce Pythonistas to methods for scaling their data science and machine learning work to larger datasets and larger models, using the tools and APIs they know and lo

Coiled 102 Nov 10, 2022
Two phase pipeline + StreamlitTwo phase pipeline + Streamlit

Two phase pipeline + Streamlit This is an example project that demonstrates how to create a pipeline that consists of two phases of execution. In betw

Rick Lamers 1 Nov 17, 2021
vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models

gg I wasn't satisfied with any of the other available Gemini clients, so I wrote my own. Requires Python 3.9 (maybe older, I haven't checked) and opti

RAFAEL RODRIGUES 5 Jan 03, 2023
An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify.

An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify. The ETL process flows from AWS's S3 into staging tables in AWS Redshift.

1 Feb 11, 2022
Python beta calculator that retrieves stock and market data and provides linear regressions.

Stock and Index Beta Calculator Python script that calculates the beta (β) of a stock against the chosen index. The script retrieves the data and resa

sammuhrai 4 Jul 29, 2022