Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers.

Overview

Cherche

Neural search



Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers. Cherche is meant to be used with small to medium sized corpora. Cherche's main strength is its ability to build diverse and end-to-end pipelines.

Alt text

Installation 🤖

pip install cherche

To install the development version:

pip install git+https://github.com/raphaelsty/cherche

Documentation 📜

Documentation is available here. It provides details about retrievers, rankers, pipelines, question answering, summarization, and examples.

QuickStart 💨

Documents 📑

Cherche allows findings the right document within a list of objects. Here is an example of a corpus.

from cherche import data

documents = data.load_towns()

documents[:3]
[{'id': 0,
  'title': 'Paris',
  'url': 'https://en.wikipedia.org/wiki/Paris',
  'article': 'Paris is the capital and most populous city of France.'},
 {'id': 1,
  'title': 'Paris',
  'url': 'https://en.wikipedia.org/wiki/Paris',
  'article': "Since the 17th century, Paris has been one of Europe's major centres of science, and arts."},
 {'id': 2,
  'title': 'Paris',
  'url': 'https://en.wikipedia.org/wiki/Paris',
  'article': 'The City of Paris is the centre and seat of government of the region and province of Île-de-France.'
  }]

Retriever ranker 🔍

Here is an example of a neural search pipeline composed of a TfIdf that quickly retrieves documents, followed by a ranking model. The ranking model sorts the documents produced by the retriever based on the semantic similarity between the query and the documents.

from cherche import data, retrieve, rank
from sentence_transformers import SentenceTransformer

# List of dicts
documents = data.load_towns()

# Retrieve on fields title and article
retriever = retrieve.TfIdf(key="id", on=["title", "article"], documents=documents, k=30)

# Rank on fields title and article
ranker = rank.Encoder(
    key = "id",
    on = ["title", "article"],
    encoder = SentenceTransformer("sentence-transformers/all-mpnet-base-v2").encode,
    k = 3,
    path = "encoder.pkl"
)

# Pipeline creation
search = retriever + ranker

search.add(documents=documents)

search("Bordeaux")
[{'id': 57, 'similarity': 0.69513476},
 {'id': 63, 'similarity': 0.6214991},
 {'id': 65, 'similarity': 0.61809057}]

Map the index to the documents to access their contents.

search += documents
search("Bordeaux")
[{'id': 57,
  'title': 'Bordeaux',
  'url': 'https://en.wikipedia.org/wiki/Bordeaux',
  'article': 'Bordeaux ( bor-DOH, French: [bɔʁdo] (listen); Gascon Occitan: Bordèu [buɾˈðɛw]) is a port city on the river Garonne in the Gironde department, Southwestern France.',
  'similarity': 0.69513476},
 {'id': 63,
  'title': 'Bordeaux',
  'url': 'https://en.wikipedia.org/wiki/Bordeaux',
  'article': 'The term "Bordelais" may also refer to the city and its surrounding region.',
  'similarity': 0.6214991},
 {'id': 65,
  'title': 'Bordeaux',
  'url': 'https://en.wikipedia.org/wiki/Bordeaux',
  'article': "Bordeaux is a world capital of wine, with its castles and vineyards of the Bordeaux region that stand on the hillsides of the Gironde and is home to the world's main wine fair, Vinexpo.",
  'similarity': 0.61809057}]

Retrieve 👻

Cherche provides different retrievers that filter input documents based on a query.

  • retrieve.Elastic
  • retrieve.TfIdf
  • retrieve.Lunr
  • retrieve.BM25Okapi
  • retrieve.BM25L
  • retrieve.Flash
  • retrieve.Encoder

Rank 🤗

Cherche rankers are compatible with SentenceTransformers models, Hugging Face sentence similarity models, Hugging Face zero shot classification models, and of course with your own models.

Summarization and question answering

Cherche provides modules dedicated to summarization and question answering. These modules are compatible with Hugging Face's pre-trained models and can be fully integrated into neural search pipelines.

Acknowledgements 👏

The BM25 models available in Cherche are wrappers around rank_bm25. Elastic retriever is a wrapper around Python Elasticsearch Client. TfIdf retriever is a wrapper around scikit-learn's TfidfVectorizer. Lunr retriever is a wrapper around Lunr.py. Flash retriever is a wrapper around FlashText. DPR and Encode rankers are wrappers dedicated to the use of the pre-trained models of SentenceTransformers in a neural search pipeline. ZeroShot ranker is a wrapper dedicated to the use of the zero-shot sequence classifiers of Hugging Face in a neural search pipeline.

See also 👀

Cherche is a minimalist solution and meets a need for modularity. Cherche is the way to go if you start with a list of documents as JSON with multiple fields to search on and want to create pipelines. Also ,Cherche is well suited for middle sized corpora.

Do not hesitate to look at Haystack, Jina, or TxtAi which offer very advanced solutions for neural search and are great.

Dev Team 💾

The Cherche dev team is made up of Raphaël Sourty and François-Paul Servant 🥳

Comments
  • Added spelling corrector object

    Added spelling corrector object

    Hello ! I added a spelling corrector base class as well as the original implementation of the Norvig spelling corrector. The spelling corrector can be fitted directly on the pipeline's documents with the '.add(documents)' method. I also provided an optional (defaults to False) external dictionary, the one originally used by Norvig.

    I have no issue updating my code for improvements, so feel free to suggest any modification !

    opened by NicolasBizzozzero 4
  • 0.0.5

    0.0.5

    Pull request for Cherche version 0.0.5

    • RAG: add RAG generator for open domain question answering
    • RapidFuzzy: New blazzing fast retriever
    • Retrievers: Provide similarities for each retriever
    • Union & Intersection: Keep similarity scores
    opened by raphaelsty 1
  • Batch processing

    Batch processing

    Retrieving documents with batch of queries can significantly speed up things. It is now available for few models using the development version via the batch method.

    Models involved are:

    • TfIdf retriever
    • Encoder retriever (milvus + faiss)
    • Encoder ranker (milvus)
    • DPR retriever (milvus + faiss)
    • DPR ranker (milvus)
    • Recommend retriever

    Batch is not yet compatible with pipelines.

    enhancement 
    opened by raphaelsty 0
  • Cherche 1.0.0

    Cherche 1.0.0

    Here is an essential update for Cherche. The update retains the previous API and is compatible with previous versions. 🥳

    Main additions:

    • Added compatibility with two new open-source retrievers: Meilisearch and TypeSense.
    • Compatibility with the Milvus index to use the retriever.Encoder and retriever.DPR models on massive corpora.
    • Compatibility with the Milvus index to store ranker embeddings in a database rather than in memory.
    • Progress bar when pre-computing embeddings by Encoder, DPR retrievers and Encoder, DPR rankers.
    • All pipelines (voting, intersection, concatenation) produce a similarity score. To do so, the pipeline object applies a softmax to normalize the scores, thus allowing us to "compare" the scores of two distinct models.
    • Integration of collaborative filtering models via adding a Recommend retriever and a Recommend ranker (indexation via Faiss and compatible with Milvus) to consider users' preferences in the search.
    opened by raphaelsty 0
  • "IndexError: index out of range in self "While adding documents to cherche pipeline

    I'm using a cherche pipline built of a tfidf retriever with a sentencetransformer ranker as follows : search = (retriever + ranker) While trying to add documents to the pipeline (search.add(documents=documents), I got this error :

    """/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py in embedding(input, weight, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse) 2181 # remove once script supports set_grad_enabled 2182 no_grad_embedding_renorm(weight, input, max_norm, norm_type) -> 2183 return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse) 2184 2185

    IndexError: index out of range in self"""

    opened by delmetni 0
  • incomplete doc about metrics

    incomplete doc about metrics

    opened by fpservant 0
Releases(1.0.1)
  • 1.0.1(Oct 27, 2022)

  • 1.0.0(Oct 26, 2022)

    What's Changed

    Here is an essential update for Cherche! 🥳

    • Added compatibility with two new open-source retrievers: Meilisearch and TypeSense.
    • Compatibility with the Milvus index to use the retriever.Encoder and retriever.DPR models on massive corpora.
    • Compatibility with the Milvus index to store ranker embeddings in a database rather than in memory.
    • Progress bar when pre-computing embeddings by Encoder, DPR retrievers and Encoder, DPR rankers.
    • The path parameter is no longer used.
    • All pipelines (voting, intersection, concatenation) produce a similarity score. To do so, the pipeline object applies a softmax to normalize the scores, thus allowing us to "compare" the scores of two distinct models.
    • Integration of collaborative filtering models via adding a Recommend retriever and a Recommend ranker (indexation via Faiss and compatible with Milvus) to consider users' preferences in the search.

    Cherche is now fully compatible with large-scale corpora and deeply integrates collaborative filtering. Updates retains the previous API and is compatible with previous versions.

    Source code(tar.gz)
    Source code(zip)
  • 0.1.0(Jun 16, 2022)

    Added compatibility with the ONNX environment and quantization to significantly speed up sentence transformers and question answering models. 🏎

    It is now possible to choose the type of index for the Encoder and DPR retrievers in order to process the largest corpora while using the GPU.

    Source code(tar.gz)
    Source code(zip)
  • 0.0.9(Apr 13, 2022)

  • 0.0.8(Mar 7, 2022)

  • 0.0.7(Mar 7, 2022)

  • 0.0.6(Mar 3, 2022)

    • Update documentation
    • Update retriever Encoder and DPR, path is optionnal
    • Add deployment documentation
    • Update similarity type
    • Avoid round similarity
    Source code(tar.gz)
    Source code(zip)
  • 0.0.5(Feb 8, 2022)

    • Loading and Saving tutorial
    • Fuzzy retriever
    • Similarities everywhere (retrievers, union, intersection provide similarity scores)
    • RAG generation
    Source code(tar.gz)
    Source code(zip)
  • 0.0.4(Jan 20, 2022)

    Update of the encoder retriever and the DPR retriever. Documents in the Faiss index will not be duplicated. Query embeddings can now be pre-computed for ranker Encoder and ranker DPR to speed up evaluation without having to compute it again.

    Source code(tar.gz)
    Source code(zip)
  • 0.0.3(Jan 13, 2022)

  • 0.0.2(Jan 12, 2022)

    Update of the Cherche dependencies. The previous dependencies were too strict and restrictive as they were limited to a specific version for each package.

    Source code(tar.gz)
    Source code(zip)
Owner
Raphael Sourty
PhD Student @ IRIT and Renault
Raphael Sourty
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022
PyTorch code for EMNLP 2019 paper "LXMERT: Learning Cross-Modality Encoder Representations from Transformers".

LXMERT: Learning Cross-Modality Encoder Representations from Transformers Our servers break again :(. I have updated the links so that they should wor

Hao Tan 838 Dec 19, 2022
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
Lingtrain Aligner — ML powered library for the accurate texts alignment.

Lingtrain Aligner ML powered library for the accurate texts alignment in different languages. Purpose Main purpose of this alignment tool is to build

Sergei Averkiev 76 Dec 14, 2022
Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment Analysis with Affective Knowledge. Proceedings of EMNLP 2021

AAGCN-ACSA EMNLP 2021 Introduction This repository was used in our paper: Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment An

Akuchi 36 Dec 18, 2022
This is a really simple text-to-speech app made with python and tkinter.

Tkinter Text-to-Speech App by Souvik Roy This is a really simple tkinter app which converts the text you have entered into a speech. It is created wit

Souvik Roy 1 Dec 21, 2021
Codes for processing meeting summarization datasets AMI and ICSI.

Meeting Summarization Dataset Meeting plays an essential part in our daily life, which allows us to share information and collaborate with others. Wit

xcfeng 39 Dec 14, 2022
Shared code for training sentence embeddings with Flax / JAX

flax-sentence-embeddings This repository will be used to share code for the Flax / JAX community event to train sentence embeddings on 1B+ training pa

Nils Reimers 23 Dec 30, 2022
Continuously update some NLP practice based on different tasks.

NLP_practice We will continuously update some NLP practice based on different tasks. prerequisites Software pytorch = 1.10 torchtext = 0.11.0 sklear

0 Jan 05, 2022
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
CredData is a set of files including credentials in open source projects

CredData is a set of files including credentials in open source projects. CredData includes suspicious lines with manual review results and more information such as credential types for each suspicio

Samsung 19 Sep 07, 2022
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

What is MUSE? MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE). MUS

Dani El-Ayyass 47 Sep 05, 2022
Kurumi ChatBot

KurumiChatBot Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @TokisakiChatB

Yoga Pranata 3 Jun 28, 2022
KR-FinBert And KR-FinBert-SC

KR-FinBert & KR-FinBert-SC Much progress has been made in the NLP (Natural Language Processing) field, with numerous studies showing that domain adapt

5 Jul 29, 2022
LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search

LightSpeech UnOfficial PyTorch implementation of LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search.

Rishikesh (ऋषिकेश) 54 Dec 03, 2022
open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

中文开放信息抽取系统, open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

7 Nov 02, 2022
Beyond Accuracy: Behavioral Testing of NLP models with CheckList

CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models

Marco Tulio Correia Ribeiro 1.8k Dec 28, 2022
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

652 Jan 06, 2023
Twitter-Sentiment-Analysis - Twitter sentiment analysis for india's top online retailers(2019 to 2022)

Twitter-Sentiment-Analysis Twitter sentiment analysis for india's top online retailers(2019 to 2022) Project Overview : Sentiment Analysis helps us to

Balaji R 1 Jan 01, 2022