A collection of models for image - text generation in ACM MM 2021.

Overview

Bi-directional Image and Text Generation

UMT-BITG (image & text generator)

Unifying Multimodal Transformer for Bi-directional Image and Text Generation,
Yupan Huang, Bei Liu, Yutong Lu, in ACM MM 2021 (Industrial Track).

UMT-DBITG (diverse image & text generator)

A Picture is Worth a Thousand Words: A Unified System for Diverse Captions and Rich Images Generation,
Yupan Huang, Bei Liu, Jianlong Fu, Yutong Lu, in ACM MM 2021 (Video and Demo Track).

Poster or slides are available in the assets folder by visiting OneDrive.

Data & Pre-trained Models

Download preprocessed data and our pre-trained models by visiting OneDrive. We suggest following our data structures, which is consistent with the paths in config.py. You may need to modify the root_path in config.py. In addition, please following the instructions to prepare some other data:

  • Download grid features in path data/grid_features provided by X-LXMERT or follow feature extraction to extract these features.
    wget https://ai2-vision-x-lxmert.s3-us-west-2.amazonaws.com/butd_features/COCO/maskrcnn_train_grid8.h5 -P data/grid_features
    wget https://ai2-vision-x-lxmert.s3-us-west-2.amazonaws.com/butd_features/COCO/maskrcnn_valid_grid8.h5 -P data/grid_features
    wget https://ai2-vision-x-lxmert.s3-us-west-2.amazonaws.com/butd_features/COCO/maskrcnn_test_grid8.h5 -P data/grid_features
    
  • For text-to-image evaluation on MSCOCO dataset, we need the real images to calculate the FID metric. For UMT-DBITG, we use MSCOCO karpathy split, which has been included in the OneDrive folder (images/imgs_karpathy). For UMT-BITG, please download MSCOCO validation set in path images/coco_val2014.

Citation

If you like our paper or code, please generously cite us:

@inproceedings{huang2021unifying,
  author    = {Yupan Huang and Bei Liu and Yutong Lu},
  title     = {Unifying Multimodal Transformer for Bi-directional Image and Text Generation},
  booktitle = {Proceedings of the 29th ACM International Conference on Multimedia},
  year      = {2021}
}

@inproceedings{huang2021diverse,
  author    = {Yupan Huang and Bei Liu and Jianlong Fu and Yutong Lu},
  title     = {A Picture is Worth a Thousand Words: A Unified System for Diverse Captions and Rich Images Generation},
  booktitle = {Proceedings of the 29th ACM International Conference on Multimedia},
  year      = {2021}
}

Acknowledgement

Our code is based on LaBERT and X-LXMERT. Our evaluation code is from pytorch-fid and inception_score. We sincerely thank them for their contributions!

Feel free to open issues or email to me for help to use this code. Any feedback is welcome!

Owner
Multimedia Research
Multimedia Research at Microsoft Research Asia
Multimedia Research
Calibre recipe to convert latest issue of Analyse & Kritik into an ebook

Calibre Recipe für "Analyse & Kritik" Dies ist ein "Recipe" für die Konvertierung der aktuellen Ausgabe der Zeitung Analyse & Kritik in ein Ebook. Es

Henning 3 Jan 04, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN

artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern

Phil Wang 2.3k Jan 01, 2023
Paddle2.x version AI-Writer

Paddle2.x 版本AI-Writer 用魔改 GPT 生成网文。Tuned GPT for novel generation.

yujun 74 Jan 04, 2023
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Jungil Kong 1.1k Jan 02, 2023
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

9 Jan 08, 2023
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
kochat

Kochat 챗봇 빌더는 성에 안차고, 자신만의 딥러닝 챗봇 애플리케이션을 만드시고 싶으신가요? Kochat을 이용하면 손쉽게 자신만의 딥러닝 챗봇 애플리케이션을 빌드할 수 있습니다. # 1. 데이터셋 객체 생성 dataset = Dataset(ood=True) #

1 Oct 25, 2021
This is a modification of the OpenAI-CLIP repository of moein-shariatnia

This is a modification of the OpenAI-CLIP repository of moein-shariatnia

Sangwon Beak 2 Mar 04, 2022
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Jan 08, 2023
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
Common Voice Dataset explorer

Common Voice Dataset Explorer Common Voice Dataset is by Mozilla Made during huggingface finetuning week Usage pip install -r requirements.txt streaml

Ceyda Cinarel 22 Nov 16, 2022
Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow. Documentation Proper documentation is available at

HUSEIN ZOLKEPLI 151 Jan 05, 2023
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

1.1k Dec 27, 2022
Practical Machine Learning with Python

Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system.

Dipanjan (DJ) Sarkar 2k Jan 08, 2023
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Curso práctico: NLP de cero a cien 🤗

Curso Práctico: NLP de cero a cien Comprende todos los conceptos y arquitecturas clave del estado del arte del NLP y aplícalos a casos prácticos utili

Somos NLP 147 Jan 06, 2023
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

NEC Laboratories Europe 13 Sep 08, 2022
Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine

Semantic search through Wikipedia with the Weaviate vector search engine Weaviate is an open source vector search engine with build-in vectorization a

SeMI Technologies 191 Dec 26, 2022