PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Overview

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

This repository contains the PyTorch implementation of the PanopticBEV model proposed in our RA-L 2021 paper Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images.

Our approach, PanopticBEV, is the state-of-the-art approach for generating panoptic segmentation maps in the bird's eye view using only monocular frontal view images.

PanopticBEV Teaser

If you find this code useful for your research, please consider citing our paper:

@article{gosala2021bev,
  title={Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images},
  author={Gosala, Nikhil and Valada, Abhinav},
  journal={arXiv preprint arXiv:2108.03227},
  year={2021}
}

Relevant links

System requirements

  • Linux (Tested on Ubuntu 18.04)
  • Python3 (Tested using Python 3.6.9)
  • PyTorch (Tested using PyTorch 1.8.1)
  • CUDA (Tested using CUDA 11.1)

Installation

a. Create a python virtual environment and activate it.

python3 -m venv panoptic_bev
source panoptic_bev/bin/activate

b. Update pip to the latest version.

python3 -m pip install --upgrade pip

c. Install the required python dependencies using the provided requirements.txt file.

pip3 install -r requirements.txt

d. Install the PanopticBEV code.

python3 setup.py develop

Obtaining the datasets

Please download the datasets from here and follow the instructions provided in the encapsulated readme file.

Code Execution

Configuration parameters

The configuration parameters of the model such as the learning rate, batch size, and dataloader options are stored in the experiments/config folder. If you intend to modify the model parameters, please do so here.

Training and Evaluation

The training and evaluation python codes along with the shell scripts to execute them are provided in the scripts folder. Before running the shell scripts, please fill in the missing parameters with your computer-specific data paths and parameters.

To train the model, execute the following command after replacing * with either kitti or nuscenes.

bash train_panoptic_bev_*.sh

To evaluate the model, execute the following command after replacing * with either kitti or nuscenes.

bash eval_panoptic_bev_*.sh 

Acknowledgements

This work was supported by the Federal Ministry of Education and Research (BMBF) of Germany under ISA 4.0 and by the Eva Mayr-Stihl Stiftung.

This project contains code adapted from other open-source projects. We especially thank the authors of:

License

This code is released under the GPLv3 for academic usage. For commercial usage, please contact Nikhil Gosala.

BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Zhen Dong 36 Dec 02, 2022
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 05, 2023
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Descript 150 Dec 06, 2022
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022