GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

Related tags

Deep LearningGPOEO
Overview

GPOEO

GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison.

[1] P. Zou, L. Ang, K. Barker, and R. Ge, “Indicator-directed dynamic power management for iterative workloads on gpu-accelerated systems,” in 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). IEEE, 2020, pp. 559-568.

  1. ./EPOpt contains source code of the GPOEO and ODPP [1].

  2. ./PerformanceMeasurement (PerfMeasure) is a NVIDIA GPU measurer for energy/power/utilities/clocks

Make GPOEO

Modify pathes of headers and libraries in ./EPOpt/makefile . cd ./EPOpt && mkdir ./build && cp makefile ./build cd ./build && make

Make PerfMeasure

Modify pathes of headers and libraries in ./PerformanceMeasurement/makefile . cd ./PerformanceMeasurement && mkdir ./build && cp makefile ./build cd ./build && make

Use GPOEO in python applications

GPOEO only has two APIs:

Begin(GPUID4CUDA, GPUID4NVML, RunMode, MeasureOutDir, ModelDir, TestPrefix)
End()

GPUID4CUDA: GPU ID used in CUDA environment.

GPUID4NVML: GPU ID queried with nvidia-smi and used to initialize CUPTI.

RunMode: "WORK" (run energy saving online); "MEASURE" (measure hardware performance counter metrics and other data for training multi-objective prediction models).

MeasureOutDir: measurement output file path.

ModelDir: the path of multi-objective prediction models.

TestPrefix: prefix name of one run.

The two APIs should be inserted at the beginning and end of the main python file respectively. As shown below:

from PyEPOpt import EPOpt

if __name__=="__main__":
    EPOpt.Begin(GPUID4CUDA, GPUID4NVML, RunMode, MeasureOutDir, ModelDir, TestPrefix)

    .....

    EPOpt.End()

Use ODPP [1] in python applications

ODPP can be implemented as a daemon. However, for the convenience of comparing GPOEO and ODPP, we also implement ODPP into the same form: two APIs.

ODPPBegin(GPUID4CUDA, GPUID4NVML, RunMode, MeasureOutDir, ModelDir, TestPrefix)
ODPPEnd()

GPUID4CUDA: GPU ID used in CUDA environment.

GPUID4NVML: GPU ID queried with nvidia-smi and used to initialize CUPTI.

RunMode: "ODPP" (run ODPP online).

MeasureOutDir: not used.

ModelDir: the path of ODPP models.

TestPrefix: prefix name of one run.

The two APIs should be inserted at the beginning and end of the main python file respectively. As shown below:

from ODPP import ODPPBegin, ODPPEnd

if __name__=="__main__":
    ODPPBegin(GPUID4CUDA, GPUID4NVML, RunMode, MeasureOutDir, ModelDir, TestPrefix)

    .....

    ODPPEnd()
Owner
瑞雪轻飏
瑞雪轻飏
StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation

StyleGAN2 with adaptive discriminator augmentation (ADA) — Official TensorFlow implementation Training Generative Adversarial Networks with Limited Da

NVIDIA Research Projects 1.7k Dec 29, 2022
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
Audio2Face - Audio To Face With Python

Audio2Face Discription We create a project that transforms audio to blendshape w

FACEGOOD 724 Dec 26, 2022
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022