Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Overview

Transfer-Learning-in-Reinforcement-Learning

Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Final Report

Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Cite this work

Nathan Beck, Abhiramon Rajasekharan, Hieu Tran, "Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations", 2021

Project description

Transfer learning approaches in reinforcement learning aim to assist agents in learning their target domains by leveraging the knowledge learned from other agents that have been trained on similar source domains. For example, recent research focus within this space has been placed on knowledge transfer between tasks that have different transition dynamics and reward functions; however, little focus has been placed on knowledge transfer between tasks that have different action spaces.

In this paper, we approach the task of transfer learning between domains that differ in action spaces. We present a reward shaping method based on source embedding similarity that is applicable to domains with both discrete and continuous action spaces. The efficacy of our approach is evaluated on transfer to restricted action spaces in the Acrobot-v1 and Pendulum-v0 domains (Brockman et al. 2016).

Our presentations

  • Presentation 1 here
  • Google Doc Folder here

Our Google Colab

https://colab.research.google.com/drive/1cQCV9Ko-prpB8sH6FlB4oj781On-ut_w?usp=sharing

Setup

  1. Clone our repository
  2. Install Gym

Using pip:

pip install gym

Or Building from Source

git clone https://github.com/openai/gym
cd gym
pip install -e .

How to run?

Run with python IDE

  1. Open main.py or main_multiple_run.py
  2. Modify env_name and algorithm that you want to run
  3. Modify parameters in transfer_execute function if needed
  4. Log will be printed out to the terminal and the plotting result will be shown on the new windows.

Run with Google Colab

Follow our sample in file Reward_Shaping_TL.ipynb to run your own colab.

Implemented Algorithms in Stable-Baseline3

Name Recurrent Box Discrete MultiDiscrete MultiBinary Multi Processing
A2C ✔️ ✔️ ✔️ ✔️ ✔️
DDPG ✔️
DQN ✔️
HER ✔️ ✔️
PPO ✔️ ✔️ ✔️ ✔️ ✔️
SAC ✔️
TD3 ✔️
QR-DQN1 ✔️
TQC1 ✔️
Maskable PPO1 ✔️ ✔️ ✔️ ✔️

1: Implemented in SB3 Contrib GitHub repository.

Actions gym.spaces:

  • Box: A N-dimensional box that containes every point in the action space.
  • Discrete: A list of possible actions, where each timestep only one of the actions can be used.
  • MultiDiscrete: A list of possible actions, where each timestep only one action of each discrete set can be used.
  • MultiBinary: A list of possible actions, where each timestep any of the actions can be used in any combination.

Refercences

  1. OpenAI Gym repo
  2. OpenAI Gym website
  3. Stable Baselines 3 repo
  4. Robotschool repo
  5. Gyem extension repos - This python package is an extension to OpenAI Gym for auxiliary tasks (multitask learning, transfer learning, inverse reinforcement learning, etc.)
  6. Example code of TL in DL repo
  7. Retro Contest - a transfer learning contest that measures a reinforcement learning algorithm’s ability to generalize from previous experience (hosted by OpenAI) link
  8. Rainbow: Combining Improvements in Deep Reinforcement Learning (repo), (paper)
  9. Experience replay (link)
  10. Solving RL classic control (link)

Related papers

  1. Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation (paper), (repo)
  2. Deep Transfer Reinforcement Learning for Text Summarization (paper),(repo)
  3. Using Transfer Learning Between Games to Improve Deep Reinforcement Learning Performance and Stability (paper), (poster)
  4. Multi-Source Policy Aggregation for Transfer Reinforcement Learning between Diverse Environmental Dynamics (IJCAI 2020) (paper), (repo)
  5. Using Transfer Learning Between Games to Improve Deep Reinforcement Learning Performance and Stability (paper), (poster)
  6. Deep Reinforcement Learning and Transfer Learning with Flappy Bird (paper), (poster)
  7. Decoupling Dynamics and Reward for Transfer Learning (paper), (repo)
  8. Progressive Neural Networks (paper)
  9. Deep Learning for Video Game Playing (paper)
  10. Disentangled Skill Embeddings for Reinforcement Learning (paper)
  11. Playing Atari with Deep Reinforcement Learning (paper)
  12. Dueling Network Architectures for Deep Reinforcement Learning (paper)
  13. ACTOR-MIMIC DEEP MULTITASK AND TRANSFER REINFORCEMENT LEARNING (paper)
  14. DDPG (link)

Contributors

  1. Nathan Beck [email protected]
  2. Abhiramon Rajasekharan [email protected]
  3. Trung Hieu Tran [email protected]
Owner
Trung Hieu Tran
Research Scientist @Facebook ; former @Apple
Trung Hieu Tran
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023