Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Overview

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text for natural language processing (NLP) research.

Note: The scripts have been created for and tested with the Japanese version of Wikipedia only.

Preprocessed files

Some of the preprocessed files generated by this repo's scripts can be downloaded from the Releases page.

All the preprocessed files are distributed under the CC-BY-SA 3.0 and GFDL licenses. For more information, see the License section below.

Example usage of the scripts

Get Wikipedia page ids from a Cirrussearch dump file

get_all_page_ids_from_cirrussearch.py

This script extracts the page ids and revision ids of all pages from a Wikipedia Cirrussearch dump file (available from this site.) It also adds the following information to each item based on the information in the dump file:

  • "num_inlinks": the number of incoming links to the page.
  • "is_disambiguation_page": whether the page is a disambiguation page.
  • "is_sexual_page": whether the page is labeled containing sexual contents.
  • "is_violent_page": whether the page is labeled containing violent contents.
$ python get_all_page_ids_from_cirrussearch.py \
--cirrus_file ~/data/wikipedia/cirrussearch/20211129/jawiki-20211129-cirrussearch-content.json.gz \
--output_file ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json

# If you want the output file sorted by the page id:
$ cat ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json|jq -s -c 'sort_by(.pageid)[]' > ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129-sorted.json
$ mv ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129-sorted.json ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json

The script outputs a JSON Lines file containing following items, one item per line:

{
    "title": "アンパサンド",
    "pageid": 5,
    "revid": 85364431,
    "num_inlinks": 231,
    "is_disambiguation_page": false,
    "is_sexual_page": false,
    "is_violent_page": false
}

Get Wikipedia page HTMLs

get_page_htmls.py

This script fetches HTML contents of the Wikipedia pages specified by the page ids in the input file. It makes use of Wikimedia REST API to accsess the contents of Wikipedia pages.

Important: Be sure to check the terms and conditions of the API documented in the official page. Especially, you may not send more than 200 requests/sec to the API. You should also set your contact information (e.g., email address) in the User-Agent header so that Wikimedia can contact you quickly if necessary.

# It takes about 2 days to fetch all the articles in Japanese Wikipedia
$ python get_page_htmls.py \
--page_ids_file ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json \
--output_file ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json.gz \
--language ja \
--user_agent <your_contact_information> \
--batch_size 20 \
--mobile

# If you want the output file sorted by the page id:
$ zcat ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json.gz|jq -s -c 'sort_by(.pageid)[]'|gzip > ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129-sorted.json.gz
$ mv ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129-sorted.json.gz ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json.gz

# Splitting the file for distribution
$ gunzip ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json.gz
$ split -n l/5 --numeric-suffixes=1 --additional-suffix=.json ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.
$ gzip ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.*.json
$ gzip ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json

The script outputs a gzipped JSON Lines file containing following items, one item per line:

{
  "title": "アンパサンド",
  "pageid": 5,
  "revid": 85364431,
  "url": "https://ja.wikipedia.org/api/rest_v1/page/mobile-html/%E3%82%A2%E3%83%B3%E3%83%91%E3%82%B5%E3%83%B3%E3%83%89/85364431",
  "html": "
}

Extract paragraphs from the Wikipedia page HTMLs

extract_paragraphs_from_page_htmls.py

This script extracts paragraph texts from a Wikipedia page HTMLs file generated by get_page_htmls.py. You can specify the minimum and maximum length of the paragraph texts to be extracted.

# This produces 8,921,367 paragraphs
$ python extract_paragraphs_from_page_htmls.py \
--page_htmls_file ~/work/wikipedia-utils/20211129/page-htmls-jawiki-20211129.json.gz \
--output_file ~/work/wikipedia-utils/20211129/paragraphs-jawiki-20211129.json.gz \
--min_paragraph_length 10 \
--max_paragraph_length 1000

Make a plain text corpus of Wikipedia paragraph/page texts

make_corpus_from_paragraphs.py

This script produces a plain text corpus file from a paragraphs file generated by extract_paragraphs_from_page_htmls.py. You can optionally filter out disambiguation/sexual/violent pages from the output file by specifying the corresponding command line options.

Here we use mecab-ipadic-NEologd in splitting texts into sentences so that some sort of named entities will not be split into sentences.

The output file is a gzipped text file containing one sentence per line, with the pages separated by blank lines.

# 22,651,544 lines from all pages
$ python make_corpus_from_paragraphs.py \
--paragraphs_file ~/work/wikipedia-utils/20211129/paragraphs-jawiki-20211129.json.gz \
--output_file ~/work/wikipedia-utils/20211129/corpus-jawiki-20211129.txt.gz \
--mecab_option '-d /usr/local/lib/mecab/dic/ipadic-neologd-v0.0.7' \
--min_sentence_length 10 \
--max_sentence_length 1000

# 18,721,087 lines from filtered pages
$ python make_corpus_from_paragraphs.py \
--paragraphs_file ~/work/wikipedia-utils/20211129/paragraphs-jawiki-20211129.json.gz \
--output_file ~/work/wikipedia-utils/20211129/corpus-jawiki-20211129-filtered-large.txt.gz \
--page_ids_file ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json \
--mecab_option '-d /usr/local/lib/mecab/dic/ipadic-neologd-v0.0.7' \
--min_sentence_length 10 \
--max_sentence_length 1000 \
--min_inlinks 10 \
--exclude_sexual_pages

make_corpus_from_cirrussearch.py

This script produces a plain text corpus file by simply taking the text attributes of pages from a Wikipedia Cirrussearch dump file.

The resulting corpus file will be somewhat different from the one generated by make_corpus_from_paragraphs.py due to some differences in text processing. In addition, since the text attributes in the Cirrussearch dump file does not retain the page structure, it is less flexible to modify the processing of text compared to processing an HTML file with make_corpus_from_paragraphs.py.

$ python make_corpus_from_cirrussearch.py \
--cirrus_file ~/data/wikipedia/cirrussearch/20211129/jawiki-20211129-cirrussearch-content.json.gz \
--output_file ~/work/wikipedia-utils/20211129/corpus-jawiki-20211129-cirrus.txt.gz \
--min_inlinks 10 \
--exclude_sexual_pages \
--mecab_option '-d /usr/local/lib/mecab/dic/ipadic-neologd-v0.0.7'

Make a passages file from extracted paragraphs

make_passages_from_paragraphs.py

This script takes a paragraphs file generated by extract_paragraphs_from_page_htmls.py and splits the paragraph texts into a collection of pieces of texts called passages (sections/paragraphs/sentences).

It is useful for creating texts of a reasonable length that can be handled by passage-retrieval systems such as DPR.

# Make single passage from one paragraph
# 8,672,661 passages
$ python make_passages_from_paragraphs.py \
--paragraphs_file ~/work/wikipedia-utils/20211129/paragraphs-jawiki-20211129.json.gz \
--output_file ~/work/wikipedia-utils/20211129/passages-para-jawiki-20211129.json.gz \
--passage_unit paragraph \
--passage_boundary section \
--max_passage_length 400

# Make single passage from consecutive sentences within a section
# 5,170,346 passages
$ python make_passages_from_paragraphs.py \
--paragraphs_file ~/work/wikipedia-utils/20211129/paragraphs-jawiki-20211129.json.gz \
--output_file ~/work/wikipedia-utils/20211129/passages-c400-jawiki-20211129.json.gz \
--passage_unit sentence \
--passage_boundary section \
--max_passage_length 400 \
--as_long_as_possible

Build Elasticsearch indices of Wikipedia passages/pages

Requirements

  • Elasticsearch 6.x with several plugins installed
# For running build_es_index_passages.py
$ ./bin/elasticsearch-plugin install analysis-kuromoji

# For running build_es_index_cirrussearch.py (Elasticsearch 6.5.4 is needed)
$ ./bin/elasticsearch-plugin install analysis-icu
$ ./bin/elasticsearch-plugin install org.wikimedia.search:extra:6.5.4

build_es_index_passages.py

This script builds an Elasticsearch index of passages generated by make_passages_from_paragraphs.

$ python build_es_index_passages.py \
--passages_file ~/work/wikipedia-utils/20211129/passages-para-jawiki-20211129.json.gz \
--page_ids_file ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json \
--index_name jawiki-20211129-para

$ python build_es_index_passages.py \
--passages_file ~/work/wikipedia-utils/20211129/passages-c400-jawiki-20211129.json.gz \
--page_ids_file ~/work/wikipedia-utils/20211129/page-ids-jawiki-20211129.json \
--index_name jawiki-20211129-c400

build_es_index_cirrussearch.py

This script builds an Elasticsearch index of Wikipedia pages using a Cirrussearch dump file. Cirrussearch dump files are originally for Elasticsearch bulk indexing, so this script simply takes the page information from the dump file to build an index.

$ python build_es_index_cirrussearch.py \
--cirrus_file ~/data/wikipedia/cirrussearch/20211129/jawiki-20211129-cirrussearch-content.json.gz \
--index_name jawiki-20211129-cirrus \
--language ja

License

The content of Wikipedia, which can be obtained with the codes in this repository, is licensed under the CC-BY-SA 3.0 and GFDL licenses.

The codes in this repository are licensed under the Apache License 2.0.

You might also like...
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Lingtrain Aligner — ML powered library for the accurate texts alignment.
Lingtrain Aligner — ML powered library for the accurate texts alignment.

Lingtrain Aligner ML powered library for the accurate texts alignment in different languages. Purpose Main purpose of this alignment tool is to build

Augmenty is an augmentation library based on spaCy for augmenting texts.
Augmenty is an augmentation library based on spaCy for augmenting texts.

Augmenty: The cherry on top of your NLP pipeline Augmenty is an augmentation library based on spaCy for augmenting texts. Besides a wide array of high

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

This library is testing the ethics of language models by using natural adversarial texts.
This library is testing the ethics of language models by using natural adversarial texts.

prompt2slip This library is testing the ethics of language models by using natural adversarial texts. This tool allows for short and simple code and v

Biterm Topic Model (BTM): modeling topics in short texts
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Text Classification in Turkish Texts with Bert
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

Releases(2022-04-04)
Owner
Masatoshi Suzuki
Masatoshi Suzuki
Lingtrain Aligner — ML powered library for the accurate texts alignment.

Lingtrain Aligner ML powered library for the accurate texts alignment in different languages. Purpose Main purpose of this alignment tool is to build

Sergei Averkiev 76 Dec 14, 2022
A single model that parses Universal Dependencies across 75 languages.

A single model that parses Universal Dependencies across 75 languages. Given a sentence, jointly predicts part-of-speech tags, morphology tags, lemmas, and dependency trees.

Dan Kondratyuk 189 Nov 29, 2022
A multi-voice TTS system trained with an emphasis on quality

TorToiSe Tortoise is a text-to-speech program built with the following priorities: Strong multi-voice capabilities. Highly realistic prosody and inton

James Betker 2.1k Jan 01, 2023
Code Generation using a large neural network called GPT-J

CodeGenX is a Code Generation system powered by Artificial Intelligence! It is delivered to you in the form of a Visual Studio Code Extension and is Free and Open-source!

DeepGenX 389 Dec 31, 2022
Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:

Kui Xu 58 Dec 23, 2022
Multilingual word vectors in 78 languages

Aligning the fastText vectors of 78 languages Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; mean

Babylon Health 1.2k Dec 17, 2022
A relatively simple python program to generate one of those reddit text to speech videos dominating youtube.

Reddit text to speech generator A basic reddit tts video generator Current functionality Generate videos for subs based on comments,(askreddit) so rea

Aadvik 17 Dec 19, 2022
DiY Oxygen Concentrator based on the OxiKit

M19O2 DiY Oxygen Concentrator based on / inspired by the OxiKit, OpenOx, Marut, RepRap and Project Apollo platforms. About Read about the project on H

Maker's Asylum 62 Dec 22, 2022
Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention

Sinkhorn Transformer This is a reproduction of the work outlined in Sparse Sinkhorn Attention, with additional enhancements. It includes a parameteriz

Phil Wang 217 Nov 25, 2022
Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)

Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020) This repository contains the source code, pre-trained models, as well as instructio

Vasileios Lioutas 28 Dec 07, 2022
🧪 Cutting-edge experimental spaCy components and features

spacy-experimental: Cutting-edge experimental spaCy components and features This package includes experimental components and features for spaCy v3.x,

Explosion 65 Dec 30, 2022
Codename generator using WordNet parts of speech database

codenames Codename generator using WordNet parts of speech database References: https://possiblywrong.wordpress.com/2021/09/13/code-name-generator/ ht

possiblywrong 27 Oct 30, 2022
The source code of HeCo

HeCo This repo is for source code of KDD 2021 paper "Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning". Paper Link: htt

Nian Liu 106 Dec 27, 2022
🦅 Pretrained BigBird Model for Korean (up to 4096 tokens)

Pretrained BigBird Model for Korean What is BigBird • How to Use • Pretraining • Evaluation Result • Docs • Citation 한국어 | English What is BigBird? Bi

Jangwon Park 183 Dec 14, 2022
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022
Twitter-NLP-Analysis - Twitter Natural Language Processing Analysis

Twitter-NLP-Analysis Business Problem I got last @turk_politika 3000 tweets with

Çağrı Karadeniz 7 Mar 12, 2022
A website which allows you to play with the GPT-2 transformer

transformers A website which allows you to play with the GPT-2 model Built with ❤️ by raphtlw Table of contents Model Setup About Contributors Model T

raphtlw 2 Jan 27, 2022
A simple Streamlit App to classify swahili news into different categories.

Swahili News Classifier Streamlit App A simple app to classify swahili news into different categories. Installation Install all streamlit requirements

Davis David 4 May 01, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

286 Jan 02, 2023