Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

Overview

SmallPebble

Project status: experimental, unstable.



SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch in Python, using NumPy/CuPy.

The implementation is in smallpebble.py.

Features:

  • Relatively simple implementation.
  • Powerful API for creating models.
  • Various operations, such as matmul, conv2d, maxpool2d.
  • Broadcasting support.
  • Eager or lazy execution.
  • It's easy to add new SmallPebble functions.
  • GPU, if use CuPy.

Graphs are built implicitly via Python objects referencing Python objects. The only real step taken towards improving performance is to use NumPy/CuPy.

Should I use this?

You probably want a more efficient and featureful framework, such as JAX, PyTorch, TensorFlow, etc.

Read on to see:

  • Examples of deep learning models created and trained using SmallPebble.
  • A brief guide to using SmallPebble.

For an introduction to autodiff and an even more minimal autodiff implementation, look here.


import matplotlib.pyplot as plt
import numpy as np
import smallpebble as sp
from smallpebble.misc import load_data
from tqdm import tqdm

Training a neural network on MNIST

Load the dataset, and create a validation set.

X_train, y_train, _, _ = load_data('mnist')  # load / download from openml.org
X_train = X_train/255

# Separate out data for validation.
X = X_train[:50_000, ...]
y = y_train[:50_000]
X_eval = X_train[50_000:60_000, ...]
y_eval = y_train[50_000:60_000]

Build a model.

X_in = sp.Placeholder()
y_true = sp.Placeholder()

h = sp.linearlayer(28*28, 100)(X_in)
h = sp.Lazy(sp.leaky_relu)(h)
h = sp.linearlayer(100, 100)(h)
h = sp.Lazy(sp.leaky_relu)(h)
h = sp.linearlayer(100, 10)(h)
y_pred = sp.Lazy(sp.softmax)(h)
loss = sp.Lazy(sp.cross_entropy)(y_pred, y_true)

learnables = sp.get_learnables(y_pred)

loss_vals = []
validation_acc = []

Train model, and measure performance on validation dataset.

NUM_EPOCHS = 300
BATCH_SIZE = 200

eval_batch = sp.batch(X_eval, y_eval, BATCH_SIZE)

for i, (xbatch, ybatch) in tqdm(enumerate(sp.batch(X, y, BATCH_SIZE)), total=NUM_EPOCHS):
    if i > NUM_EPOCHS: break
    
    X_in.assign_value(sp.Variable(xbatch))
    y_true.assign_value(ybatch)
    
    loss_val = loss.run()  # run the graph
    if np.isnan(loss_val.array):
        print("loss is nan, aborting.")
        break
    loss_vals.append(loss_val.array)
        
    # Compute gradients, and carry out learning step.
    gradients = sp.get_gradients(loss_val)
    sp.sgd_step(learnables, gradients, 3e-4)
        
    # Compute validation accuracy:
    x_eval_batch, y_eval_batch = next(eval_batch)
    X_in.assign_value(sp.Variable(x_eval_batch))
    predictions = y_pred.run()
    predictions = np.argmax(predictions.array, axis=1)
    accuracy = (y_eval_batch == predictions).mean()
    validation_acc.append(accuracy)

plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)
plt.title('Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.plot(loss_vals)
plt.subplot(1, 2, 2)
plt.title('Validation accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.suptitle('Neural network trained on MNIST, using SmallPebble.')
plt.ylim([0, 1])
plt.plot(validation_acc)
plt.show()
301it [00:03, 94.26it/s]                         

png

Training a convolutional neural network on MNIST

Make a function that creates trainable convolutional layers:

def convlayer(height, width, depth, n_kernels, strides=[1,1]):
    # Initialise kernels:
    sigma = np.sqrt(6 / (height*width*depth+height*width*n_kernels))
    kernels_init = sigma*(np.random.random([height, width, depth, n_kernels]) - .5)
    # Wrap with sp.Variable, so we can compute gradients:
    kernels = sp.Variable(kernels_init)
    # Flag as learnable, so we can extract from the model to train:
    kernels = sp.learnable(kernels)
    # Curry, to set `strides`:
    func = lambda images, kernels: sp.conv2d(images, kernels, strides=strides, padding='SAME')
    # Curry, to use the kernels created here:
    return lambda images: sp.Lazy(func)(images, kernels)

Define a model.

X_in = sp.Placeholder()
y_true = sp.Placeholder()

h = convlayer(height=3, width=3, depth=1, n_kernels=16)(X_in)
h = sp.Lazy(sp.leaky_relu)(h)
h = sp.Lazy(lambda a: sp.maxpool2d(a, 2, 2, strides=[2, 2]))(h)

h = sp.Lazy(lambda x: sp.reshape(x, [-1, 14*14*16]))(h)
h = sp.linearlayer(14*14*16, 64)(h)
h = sp.Lazy(sp.leaky_relu)(h)

h = sp.linearlayer(64, 10)(h)
y_pred = sp.Lazy(sp.softmax)(h)
loss = sp.Lazy(sp.cross_entropy)(y_pred, y_true)

learnables = sp.get_learnables(y_pred)

loss_vals = []
validation_acc = []

# Check we get the dimensions we expected.
X_in.assign_value(sp.Variable(X_train[0:3,:].reshape([-1,28,28,1])))
y_true.assign_value(y_train[0])
h.run().array.shape
(3, 10)
NUM_EPOCHS = 300
BATCH_SIZE = 200

eval_batch = sp.batch(X_eval.reshape([-1,28,28,1]), y_eval, BATCH_SIZE)

for i, (xbatch, ybatch) in tqdm(
    enumerate(sp.batch(X.reshape([-1,28,28,1]), y, BATCH_SIZE)), total=NUM_EPOCHS):
    if i > NUM_EPOCHS: break
    
    X_in.assign_value(sp.Variable(xbatch))
    y_true.assign_value(ybatch)
    
    loss_val = loss.run()
    if np.isnan(loss_val.array):
        print("Aborting, loss is nan.")
        break
    loss_vals.append(loss_val.array)
        
    # Compute gradients, and carry out learning step.
    gradients = sp.get_gradients(loss_val)
    sp.sgd_step(learnables, gradients, 3e-4)
        
    # Compute validation accuracy:
    x_eval_batch, y_eval_batch = next(eval_batch)
    X_in.assign_value(sp.Variable(x_eval_batch))
    predictions = y_pred.run()
    predictions = np.argmax(predictions.array, axis=1)
    accuracy = (y_eval_batch == predictions).mean()
    validation_acc.append(accuracy)

plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)
plt.title('Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.plot(loss_vals)
plt.subplot(1, 2, 2)
plt.title('Validation accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.suptitle('CNN trained on MNIST, using SmallPebble.')
plt.ylim([0, 1])
plt.plot(validation_acc)
plt.show()
301it [03:35,  1.40it/s]                         

png

Training a CNN on CIFAR

Load the dataset.

X_train, y_train, _, _ = load_data('cifar')
X_train = X_train/255

# Separate out some data for validation.
X = X_train[:45_000, ...]
y = y_train[:45_000]
X_eval = X_train[45_000:50_000, ...]
y_eval = y_train[45_000:50_000]

Plot, to check it's the right data.

# This code is from: https://www.tensorflow.org/tutorials/images/cnn

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
               'dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(8,8))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(X_train[i,:].reshape(32,32,3), cmap=plt.cm.binary)
    plt.xlabel(class_names[y_train[i]])

plt.show()

png

Define the model. Due to my lack of ram, it is kept relatively small.

X_in = sp.Placeholder()
y_true = sp.Placeholder()

h = convlayer(height=3, width=3, depth=3, n_kernels=16)(X_in)
h = sp.Lazy(sp.leaky_relu)(h)
h = sp.Lazy(lambda a: sp.maxpool2d(a, 2, 2, strides=[2, 2]))(h)

h = convlayer(height=3, width=3, depth=16, n_kernels=32)(h)
h = sp.Lazy(sp.leaky_relu)(h)
h = sp.Lazy(lambda a: sp.maxpool2d(a, 2, 2, strides=[2, 2]))(h)

h = sp.Lazy(lambda x: sp.reshape(x, [-1, 8*8*32]))(h)
h = sp.linearlayer(8*8*32, 64)(h)
h = sp.Lazy(sp.leaky_relu)(h)

h = sp.linearlayer(64, 10)(h)
h = sp.Lazy(sp.softmax)(h)

y_pred = h
loss = sp.Lazy(sp.cross_entropy)(y_pred, y_true)

learnables = sp.get_learnables(y_pred)

loss_vals = []
validation_acc = []

# Check we get the expected dimensions
X_in.assign_value(sp.Variable(X[0:3, :].reshape([-1, 32, 32, 3])))
h.run().shape
(3, 10)

Train the model.

NUM_EPOCHS = 3000
BATCH_SIZE = 32

eval_batch = sp.batch(X_eval, y_eval, BATCH_SIZE)

for i, (xbatch, ybatch) in tqdm(enumerate(sp.batch(X, y, BATCH_SIZE)), total=NUM_EPOCHS):
    if i > NUM_EPOCHS: break
       
    xbatch_images = xbatch.reshape([-1, 32, 32, 3])
    X_in.assign_value(sp.Variable(xbatch_images))
    y_true.assign_value(ybatch)
    
    loss_val = loss.run()
    if np.isnan(loss_val.array):
        print("Aborting, loss is nan.")
        break
    loss_vals.append(loss_val.array)
    
    # Compute gradients, and carry out learning step.
    gradients = sp.get_gradients(loss_val)  
    sp.sgd_step(learnables, gradients, 3e-3)
          
    # Compute validation accuracy:
    x_eval_batch, y_eval_batch = next(eval_batch)
    X_in.assign_value(sp.Variable(x_eval_batch.reshape([-1, 32, 32, 3])))
    predictions = y_pred.run()
    predictions = np.argmax(predictions.array, axis=1)
    accuracy = (y_eval_batch == predictions).mean()
    validation_acc.append(accuracy)

plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)
plt.title('Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.plot(loss_vals)
plt.subplot(1, 2, 2)
plt.title('Validation accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.plot(validation_acc)
plt.show()
3001it [25:16,  1.98it/s]                            

png

...And we see some improvement, despite the model's small size, the unsophisticated optimisation method and the difficulty of the task.


Brief guide to using SmallPebble

SmallPebble provides the following building blocks to make models with:

  • sp.Variable
  • SmallPebble operations, such as sp.add, sp.mul, etc.
  • sp.get_gradients
  • sp.Lazy
  • sp.Placeholder (this is really just sp.Lazy on the identity function)
  • sp.learnable
  • sp.get_learnables

The following examples show how these are used.

sp.Variable & sp.get_gradients

With SmallPebble, you can:

  • Wrap NumPy arrays in sp.Variable
  • Apply SmallPebble operations (e.g. sp.matmul, sp.add, etc.)
  • Compute gradients with sp.get_gradients
a = sp.Variable(np.random.random([2, 2]))
b = sp.Variable(np.random.random([2, 2]))
c = sp.Variable(np.random.random([2]))
y = sp.mul(a, b) + c
print('y.array:\n', y.array)

gradients = sp.get_gradients(y)
grad_a = gradients[a]
grad_b = gradients[b]
grad_c = gradients[c]
print('grad_a:\n', grad_a)
print('grad_b:\n', grad_b)
print('grad_c:\n', grad_c)
y.array:
 [[0.50222439 0.67745659]
 [0.68666171 0.58330707]]
grad_a:
 [[0.56436821 0.2581522 ]
 [0.89043144 0.25750461]]
grad_b:
 [[0.11665152 0.85303194]
 [0.28106794 0.48955456]]
grad_c:
 [2. 2.]

Note that y is computed straight away, i.e. the (forward) computation happens immediately.

Also note that y is a sp.Variable and we could continue to carry out SmallPebble operations on it.

sp.Lazy & sp.Placeholder

Lazy graphs are constructed using sp.Lazy and sp.Placeholder.

lazy_node = sp.Lazy(lambda a, b: a + b)(1, 2)
print(lazy_node)
print(lazy_node.run())
<smallpebble.smallpebble.Lazy object at 0x7fbc92d58d50>
3
a = sp.Lazy(lambda a: a)(2)
y = sp.Lazy(lambda a, b, c: a * b + c)(a, 3, 4)
print(y)
print(y.run())
<smallpebble.smallpebble.Lazy object at 0x7fbc92d41d50>
10

Forward computation does not happen immediately - only when .run() is called.

a = sp.Placeholder()
b = sp.Variable(np.random.random([2, 2]))
y = sp.Lazy(sp.matmul)(a, b)

a.assign_value(sp.Variable(np.array([[1,2], [3,4]])))

result = y.run()
print('result.array:\n', result.array)
result.array:
 [[1.01817665 2.54693119]
 [2.42244218 5.69810698]]

You can use .run() as many times as you like.

Let's change the placeholder value and re-run the graph:

a.assign_value(sp.Variable(np.array([[10,20], [30,40]])))
result = y.run()
print('result.array:\n', result.array)
result.array:
 [[10.18176654 25.46931189]
 [24.22442177 56.98106985]]

Finally, let's compute gradients:

gradients = sp.get_gradients(result)

Note that sp.get_gradients is called on result, which is a sp.Variable, not on y, which is a sp.Lazy instance.

sp.learnable & sp.get_learnables

Use sp.learnable to flag parameters as learnable, allowing them to be extracted from a lazy graph with sp.get_learnables.

This enables the workflow of building a model, while flagging parameters as learnable, and then extracting all the parameters in one go at the end.

a = sp.Placeholder()
b = sp.learnable(sp.Variable(np.random.random([2, 1])))
y = sp.Lazy(sp.matmul)(a, b)
y = sp.Lazy(sp.add)(y, sp.learnable(sp.Variable(np.array([5]))))

learnables = sp.get_learnables(y)

for learnable in learnables:
    print(learnable)
<smallpebble.smallpebble.Variable object at 0x7fbc60b6ebd0>
<smallpebble.smallpebble.Variable object at 0x7fbc60b6ec50>

Switching between NumPy and CuPy

We can dynamically switch between NumPy and CuPy:

import cupy
import numpy
import smallpebble as sp

# Switch to CuPy.
sp.array_library = cupy

# And back to NumPy again:
sp.array_library = numpy
Owner
Sidney Radcliffe
Sidney Radcliffe
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
A hue shift helper for OBS

obs-hue-shift A hue shift helper for OBS This is a repo based on the really nice script Hegemege made. The original script can be found https://gist.g

Alexis Tyler 1 Jan 10, 2022
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
Message Passing on Cell Complexes

CW Networks This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Leh

Twitter Research 108 Jan 05, 2023
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022