Single machine, multiple cards training; mix-precision training; DALI data loader.

Overview

Template

Script Category Description

Category script
comparison script train.py, loader.py
for single-machine-multiple-cards training train_DP.py, train_DDP.py
for mixed-precision training train_amp.py
for DALI data loading loader_DALI.py

Note: The comment # new # in script represents newly added code block (compare to comparison script, e.g., train.py)

Environment

  • CPU: Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz
  • GPU: RTX 2080Ti
  • OS: Ubuntu 18.04.3 LTS
  • DL framework: Pytorch 1.6.0, Torchvision 0.7.0

Single-machine-multiple-cards training (two cards for example)

train_DP.py -- Parallel computing using nn.DataParallel

Usage:

cd Template/src
python train_DP.py

Superiority:
- Easy to use
- Accelerate training (inconspicuous)
Weakness:
- Unbalanced load
Description:
DataParallel is very convenient to use, we just need to use DataParallel to package the model:

model = ...
model = nn.DataParallel(model)

train_DDP.py -- Parallel computing using torch.distributed

Usage:

cd Template/src
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train_DDP.py

Superiority:
- balanced load
- Accelerate training (conspicuous)
Weakness:
- Hard to use
Description:
Unlike DataParallel who control multiple GPUs via single-process, distributed creates multiple process. we just need to accomplish one code and torch will automatically assign it to n processes, each running on corresponding GPU.
To config distributed model via torch.distributed, the following steps needed to be performed:

  1. Get current process index:
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
opt = parser.parse_args()
# print(opt.local_rank)
  1. Set the backend and port used for communication between GPUs:
dist.init_process_group(backend='nccl')
  1. Config current device according to the local_rank:
torch.cuda.set_device(opt.local_rank)
  1. Config data sampler:
dataset = ...
sampler = distributed.DistributedSampler(dataset)
dataloader = DataLoader(dataset=dataset, ..., sampler=sampler)
  1. Package the model:
model = ...
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = nn.parallel.DistributedDataParallel(model.cuda(), device_ids=[opt.local_rank])

Mixed-precision training

train_amp.py -- Mixed-precision training using torch.cuda.amp

Usage:

cd Template/src
python train_amp.py

Superiority:
- Easy to use
- Accelerate training (conspicuous for heavy model)
Weakness:
- Accelerate training (inconspicuous for light model)
Description:
Mixed-precision training is a set of techniques that allows us to use fp16 without causing our model training to diverge.
To config mixed-precision training via torch.cuda.amp, the following steps needed to be performed:

  1. Instantiate GradScaler object:
scaler = torch.cuda.amp.GradScaler()
  1. Modify the traditional optimization process:
# Before:
optimizer.zero_grad()
preds = model(imgs)
loss = loss_func(preds, labels)
loss.backward()
optimizer.step()

# After:
optimizer.zero_grad()
with torch.cuda.amp.autocast():
    preds = model(imgs)
    loss = loss_func(preds, labels)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()

DALI data loading

loader_DALI.py -- Data loading using nvidia.dali

Prerequisite:
- NVIDIA Driver supporting CUDA 10.0 or later (i.e., 410.48 or later driver releases)
- PyTorch 0.4 or later
- Data organization format that matches the code, the format that matches the loader_DALI.py is as follows:
 /dataset / train or test / img or gt / sub_dirs / imgs [View]
Usage:

pip install --extra-index-url https://developer.download.nvidia.com/compute/redist --upgrade nvidia-dali-cuda102
cd Template/src
python loader_DALI.py --data_source /path/to/dataset

Superiority:
- Easy to use
- Accelerate data loading
Weakness:
- Occupy video memory
Description:
NVIDIA Data Loading Library (DALI) is a collection of highly optimized building blocks and an execution engine that accelerates the data pipeline for computer vision and audio deep learning applications.
To load dataset using DALI, the following steps needed to be performed:

  1. Config external input iterator:
eii = ExternalInputIterator(data_source=opt.data_source, batch_size=opt.batch_size, shuffle=True)
# A demo of external input iterator
class ExternalInputIterator(object):
    def __init__(self, data_source, batch_size, shuffle):
        self.batch_size = batch_size
        
        img_paths = sorted(glob.glob(data_source + '/train' + '/blurry' + '/*/*.*'))
        gt_paths = sorted(glob.glob(data_source + '/train' + '/sharp' + '/*/*.*'))
        self.paths = list(zip(*(img_paths,gt_paths)))
        if shuffle:
            random.shuffle(self.paths)

    def __iter__(self):
        self.i = 0
        return self

    def __next__(self):
        imgs = []
        gts = []

        if self.i >= len(self.paths):
            self.__iter__()
            raise StopIteration

        for _ in range(self.batch_size):
            img_path, gt_path = self.paths[self.i % len(self.paths)]
            imgs.append(np.fromfile(img_path, dtype = np.uint8))
            gts.append(np.fromfile(gt_path, dtype = np.uint8))
            self.i += 1
        return (imgs, gts)

    def __len__(self):
        return len(self.paths)

    next = __next__
  1. Config pipeline:
pipe = externalSourcePipeline(batch_size=opt.batch_size, num_threads=opt.num_workers, device_id=0, seed=opt.seed, external_data = eii, resize=opt.resize, crop=opt.crop)
# A demo of pipeline
@pipeline_def
def externalSourcePipeline(external_data, resize, crop):
    imgs, gts = fn.external_source(source=external_data, num_outputs=2)
    
    crop_pos = (fn.random.uniform(range=(0., 1.)), fn.random.uniform(range=(0., 1.)))
    flip_p = (fn.random.coin_flip(), fn.random.coin_flip())
    
    imgs = transform(imgs, resize, crop, crop_pos, flip_p)
    gts = transform(gts, resize, crop, crop_pos, flip_p)
    return imgs, gts

def transform(imgs, resize, crop, crop_pos, flip_p):
    imgs = fn.decoders.image(imgs, device='mixed')
    imgs = fn.resize(imgs, resize_y=resize)
    imgs = fn.crop(imgs, crop=(crop,crop), crop_pos_x=crop_pos[0], crop_pos_y=crop_pos[1])
    imgs = fn.flip(imgs, horizontal=flip_p[0], vertical=flip_p[1])
    imgs = fn.transpose(imgs, perm=[2, 0, 1])
    imgs = imgs/127.5-1
    
    return imgs
  1. Instantiate DALIGenericIterator object:
dgi = DALIGenericIterator(pipe, output_map=["imgs", "gts"], last_batch_padded=True, last_batch_policy=LastBatchPolicy.PARTIAL, auto_reset=True)
  1. Read data:
for i, data in enumerate(dgi):
    imgs = data[0]['imgs']
    gts = data[0]['gts']
Additional tools for particle accelerator data analysis and machine information

PyLHC Tools This package is a collection of useful scripts and tools for the Optics Measurements and Corrections group (OMC) at CERN. Documentation Au

PyLHC 3 Apr 13, 2022
Data pipelines built with polars

valves Warning: the project is very much work in progress. Valves is a collection of functions for your data .pipe()-lines. This project aimes to host

14 Jan 03, 2023
For making Tagtog annotation into csv dataset

tagtog_relation_extraction for making Tagtog annotation into csv dataset How to Use On Tagtog 1. Go to Project Downloads 2. Download all documents,

hyeong 4 Dec 28, 2021
pandas: powerful Python data analysis toolkit

pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive.

pandas 36.4k Jan 03, 2023
Data Competition: automated systems that can detect whether people are not wearing masks or are wearing masks incorrectly

Table of contents Introduction Dataset Model & Metrics How to Run Quickstart Install Training Evaluation Detection DATA COMPETITION The COVID-19 pande

Thanh Dat Vu 1 Feb 27, 2022
Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

dbt Labs 6.3k Jan 08, 2023
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
A fast, flexible, and performant feature selection package for python.

linselect A fast, flexible, and performant feature selection package for python. Package in a nutshell It's built on stepwise linear regression When p

88 Dec 06, 2022
PipeChain is a utility library for creating functional pipelines.

PipeChain Motivation PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Austra

Michael Milton 2 Aug 07, 2022
Full ELT process on GCP environment.

Rent Houses Germany - GCP Pipeline Project: The goal of the project is to extract data about house rentals in Germany, store, process and analyze it u

Felipe Demenech Vasconcelos 2 Jan 20, 2022
ped-crash-techvol: Texas Ped Crash Tech Volume Pack

ped-crash-techvol: Texas Ped Crash Tech Volume Pack In conjunction with the Final Report "Identifying Risk Factors that Lead to Increase in Fatal Pede

Network Modeling Center; Center for Transportation Research; The University of Texas at Austin 2 Sep 28, 2022
Repository created with LinkedIn profile analysis project done

EN/en Repository created with LinkedIn profile analysis project done. The datase

Mayara Canaver 4 Aug 06, 2022
Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
Repositori untuk menyimpan material Long Course STMKGxHMGI tentang Geophysical Python for Seismic Data Analysis

Long Course "Geophysical Python for Seismic Data Analysis" Instruktur: Dr.rer.nat. Wiwit Suryanto, M.Si Dipersiapkan oleh: Anang Sahroni Waktu: Sesi 1

Anang Sahroni 0 Dec 04, 2021
Port of dplyr and other related R packages in python, using pipda.

Unlike other similar packages in python that just mimic the piping syntax, datar follows the API designs from the original packages as much as possible, and is tested thoroughly with the cases from t

179 Dec 21, 2022
Provide a market analysis (R)

market-study Provide a market analysis (R) - FRENCH Produisez une étude de marché Prérequis Pour effectuer ce projet, vous devrez maîtriser la manipul

1 Feb 13, 2022
ETL flow framework based on Yaml configs in Python

ETL framework based on Yaml configs in Python A light framework for creating data streams. Setting up streams through configuration in the Yaml file.

Павел Максимов 18 Jul 06, 2022
CRISP: Critical Path Analysis of Microservice Traces

CRISP: Critical Path Analysis of Microservice Traces This repo contains code to compute and present critical path summary from Jaeger microservice tra

Uber Research 110 Jan 06, 2023
Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era.

Overview docs tests package Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era

Tensorwerk 193 Nov 29, 2022
PandaPy has the speed of NumPy and the usability of Pandas 10x to 50x faster (by @firmai)

PandaPy "I came across PandaPy last week and have already used it in my current project. It is a fascinating Python library with a lot of potential to

Derek Snow 527 Jan 02, 2023