JittorVis - Visual understanding of deep learning model.

Overview

JittorVis: Visual understanding of deep learning model

Image of JittorVis

JittorVis is a deep neural network computational graph visualization library based on Jittor.

Deep neural networks have achieved breakthrough performance in many tasks such as image recognition, detection, segmentation, generation, etc. However, the development of high-quality deep models typically relies on a substantial amount of trial and error, as there is still no clear understanding of when and why a deep model works. Also, the complexity of the deep neural network architecture brings difficulties to debugging and modifying the model. JittorVis facilitates the visualization of the computational graph of the deep neural network at different levels, which brings users a deeper understanding of the computational graph from the whole to the part to debug and modify the model more effectively.

JittorVis provides the visualization and tooling needed for machine learning experimentation:

  • Observe the hierarchical structure of the model computational graph
  • Visualizing the computational model graph in the different level (ops and layers)
  • Profiling JittorVis programs

Features to be supported in the future:

  • Tracking and visualizing metrics such as loss and accuracy
  • Viewing line chart of weights, biases, or other tensors as they change over time
  • And much more

Related Links:

Installation

JittorVis need python version >= 3.7.

pip install jittorvis
or
pip3 install jittorvis

Usage

Download link for test.pkl

from jittorvis import server
server.run('test.pkl', host='0.0.0.0', port=5005)
# JittorVis start.
server.stop()
# JittorVis stop.

Then open the link 'http://localhost:5005/static/index.html' in your browser.

Visualization

JittorVis contains three main views, statistics view, navigation view, and graph structure view.

  1. Statistics view:

    The statistics view provides statistics information for the deep neuron network, such as loss and accuracy

  2. Navigation view:

    The graph structure view can visualize a hierarchical structure of a Jittor model, enabling exploration of the model. Each leaf node represents a computational node in the computational graph.

    • Click one intermediate node to selected its computational nodes.

Drawing

  1. Graph structure view:

    The graph structure view can visualize a Jittor graph, enabling inspection of the Jittor model. In the graph structure view, each rectangle represents a computational node, and each link represents data flows among computational nodes. The graph structure view has the following interactions:

    • Drag the total panel to adapt its position and scale.
    • Click on the network node to expand it, to explore its point cloud and feature map.
    • Click on the top-right plus button of each network node to explore its children.
    • Right-click on the network node to explore its detail information.

Drawing

Citation

Towards Better Analysis of Deep Convolutional Neural Networks

@article {
    liu2017convolutional,
    author={Liu, Mengchen and Shi, Jiaxin and Li, Zhen and Li, Chongxuan and Zhu, Jun and Liu, Shixia},
    journal={IEEE Transactions on Visualization and Computer Graphics},
    title={Towards Better Analysis of Deep Convolutional Neural Networks},
    year={2017},
    volume={23},
    number={1},
    pages={91-100}
}

Analyzing the Training Processes of Deep Generative Models

@article {
    liu2018generative,
    author={Liu, Mengchen and Shi, Jiaxin and Cao, Kelei and Zhu, Jun and Liu, Shixia},
    journal={IEEE Transactions on Visualization and Computer Graphics},
    title={Analyzing the Training Processes of Deep Generative Models},
    year={2018},
    volume={24},
    number={1},
    pages={77-87}
}

Analyzing the Noise Robustness of Deep Neural Networks

@article {
    cao2021robustness,
    author={Cao, Kelei and Liu, Mengchen and Su, Hang and Wu, Jing and Zhu, Jun and Liu, Shixia},
    journal={IEEE Transactions on Visualization and Computer Graphics},
    title={Analyzing the Noise Robustness of Deep Neural Networks},
    year={2021},
    volume={27},
    number={7},
    pages={3289-3304}
}

The Team

JittorVis is currently maintained by the THUVIS Group. If you are also interested in JittorVis and want to improve it, Please join us!

License

JittorVis is Apache 2.0 licensed, as found in the LICENSE.txt file.

Python implementation of R package breakDown

pyBreakDown Python implementation of breakDown package (https://github.com/pbiecek/breakDown). Docs: https://pybreakdown.readthedocs.io. Requirements

MI^2 DataLab 41 Mar 17, 2022
Convolutional neural network visualization techniques implemented in PyTorch.

This repository contains a number of convolutional neural network visualization techniques implemented in PyTorch.

1 Nov 06, 2021
Pytorch implementation of convolutional neural network visualization techniques

Convolutional Neural Network Visualizations This repository contains a number of convolutional neural network visualization techniques implemented in

Utku Ozbulak 7k Jan 03, 2023
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Dec 30, 2022
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.

Delve is a Python package for analyzing the inference dynamics of your PyTorch model.

Delve 73 Dec 12, 2022
Visual Computing Group (Ulm University) 99 Nov 30, 2022
python partial dependence plot toolbox

PDPbox python partial dependence plot toolbox Motivation This repository is inspired by ICEbox. The goal is to visualize the impact of certain feature

Li Jiangchun 722 Dec 30, 2022
L2X - Code for replicating the experiments in the paper Learning to Explain: An Information-Theoretic Perspective on Model Interpretation.

L2X Code for replicating the experiments in the paper Learning to Explain: An Information-Theoretic Perspective on Model Interpretation at ICML 2018,

Jianbo Chen 113 Sep 06, 2022
JittorVis - Visual understanding of deep learning model.

JittorVis - Visual understanding of deep learning model.

182 Jan 06, 2023
Visualize a molecule and its conformations in Jupyter notebooks/lab using py3dmol

Mol Viewer This is a simple package wrapping py3dmol for a single command visualization of a RDKit molecule and its conformations (embed as Conformer

Benoît BAILLIF 1 Feb 11, 2022
Visualization Toolbox for Long Short Term Memory networks (LSTMs)

Visualization Toolbox for Long Short Term Memory networks (LSTMs)

Hendrik Strobelt 1.1k Jan 04, 2023
An Empirical Review of Optimization Techniques for Quantum Variational Circuits

QVC Optimizer Review Code for the paper "An Empirical Review of Optimization Techniques for Quantum Variational Circuits". Each of the python files ca

Owen Lockwood 5 Jun 28, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 187 Dec 27, 2022
Implementation of linear CorEx and temporal CorEx.

Correlation Explanation Methods Official implementation of linear correlation explanation (linear CorEx) and temporal correlation explanation (T-CorEx

Hrayr Harutyunyan 34 Nov 15, 2022
tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.1) is tested on anaconda3, with PyTorch 1.5.1 / torchvision 0

Tzu-Wei Huang 7.5k Jan 07, 2023
A python library for decision tree visualization and model interpretation.

dtreeviz : Decision Tree Visualization Description A python library for decision tree visualization and model interpretation. Currently supports sciki

Terence Parr 2.4k Jan 02, 2023
An intuitive library to add plotting functionality to scikit-learn objects.

Welcome to Scikit-plot Single line functions for detailed visualizations The quickest and easiest way to go from analysis... ...to this. Scikit-plot i

Reiichiro Nakano 2.3k Dec 31, 2022
A collection of infrastructure and tools for research in neural network interpretability.

Lucid Lucid is a collection of infrastructure and tools for research in neural network interpretability. We're not currently supporting tensorflow 2!

4.5k Jan 07, 2023
Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet

Neural-Backed Decision Trees · Site · Paper · Blog · Video Alvin Wan, *Lisa Dunlap, *Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah

Alvin Wan 556 Dec 20, 2022
Logging MXNet data for visualization in TensorBoard.

Logging MXNet Data for Visualization in TensorBoard Overview MXBoard provides a set of APIs for logging MXNet data for visualization in TensorBoard. T

Amazon Web Services - Labs 327 Dec 05, 2022