Net2Vis automatically generates abstract visualizations for convolutional neural networks from Keras code.

Overview

Net2Vis Teaser Net2Vis Teaser_Legend

Net2Vis

Automatic Network Visualization

Levels of Abstraction

Unified Design

Created by Alex Bäuerle, Christian van Onzenoodt and Timo Ropinski.

Accessible online.

What is this?

Net2Vis automatically generates abstract visualizations for convolutional neural networks from Keras code.

How does this help me?

When looking at publications that use neural networks for their techniques, it is still apparent how they differ. Most of them are handcrafted and thus lack a unified visual grammar. Handcrafting such visualizations also creates ambiguities and misinterpretations.

With Net2Vis, these problems are gone. It is designed to provide an abstract network visualization while still providing general information about individual layers. We reflect the number of features as well as the spatial resolution of the tensor in our glyph design. Layer-Types can be identified through colors. Since these networks can get fairly complex, we added the possibility to group layers and thus compact the network through replacing common layer sequences.

The best of it: Once the application runs, you just have to paste your Keras code into your browser and the visualization is automatically generated based on that. You still can tweak your visualizations and create abstractions before downloading them as SVG and PDF.

How can I use this?

Either, go to our Website, or install Net2Vis locally. Our website includes no setup, but might be slower and limited in network size depending on what you are working on. Installing this locally allows you to modify the functionality and might be better performing than the online version.

Installation

Starting with Net2Vis is pretty easy (assuming python3, tested to run on python 3.6-3.8, and npm).

  1. Clone this Repo
  2. For the Backend to work, we need Cairo and Docker installed on your machine. This is used for PDF conversion and running models pasted into the browser (more) secure.

For docker, the docker daemon needs to run. This way, we can run the pasted code within separate containers.

For starting up the backend, the following steps are needed:

  1. Go into the backend folder: cd backend
  2. Install backend dependencies by running pip3 install -r requirements.txt
  3. Install the docker container by running docker build --force-rm -t tf_plus_keras .
  4. To start the server, issue: python3 server.py

The frontend is a react application that can be started as follows:

  1. Go into the frontend folder: cd net2vis
  2. Install the javascript dependencies using: npm install
  3. Start the frontend application with: npm start

Model Presets

For local installations only: If you want to replicate any of the network figures in our paper, or just want to see examples for visualizations, we have included all network figures from our paper for you to experiment with. To access those simply use the following urls:

For most of these URL endings, you will probably also find networks in the official version, however, there is no guarantee that they wont have been changed.

Citation

If you find this code useful please consider citing us:

@article{bauerle2019net2vis,
  title={Net2Vis: Transforming Deep Convolutional Networks into Publication-Ready Visualizations},
  author={B{\"a}uerle, Alex and Ropinski, Timo},
  journal={arXiv preprint arXiv:1902.04394},
  year={2019}
}

Acknowlegements

This work was funded by the Carl-Zeiss-Scholarship for Ph.D. students.

Owner
Visual Computing Group (Ulm University)
Visual Computing Group (Ulm University)
python partial dependence plot toolbox

PDPbox python partial dependence plot toolbox Motivation This repository is inspired by ICEbox. The goal is to visualize the impact of certain feature

Li Jiangchun 722 Dec 30, 2022
ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments.

ModelChimp What is ModelChimp? ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments. ModelChimp provides the followi

ModelChimp 124 Dec 21, 2022
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 20.9k Dec 28, 2022
tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.1) is tested on anaconda3, with PyTorch 1.5.1 / torchvision 0

Tzu-Wei Huang 7.5k Jan 07, 2023
Code for "High-Precision Model-Agnostic Explanations" paper

Anchor This repository has code for the paper High-Precision Model-Agnostic Explanations. An anchor explanation is a rule that sufficiently “anchors”

Marco Tulio Correia Ribeiro 735 Jan 05, 2023
Auralisation of learned features in CNN (for audio)

AuralisationCNN This repo is for an example of auralisastion of CNNs that is demonstrated on ISMIR 2015. Files auralise.py: includes all required func

Keunwoo Choi 39 Nov 19, 2022
Algorithms for monitoring and explaining machine learning models

Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-qual

Seldon 1.9k Dec 30, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Dec 30, 2022
Implementation of linear CorEx and temporal CorEx.

Correlation Explanation Methods Official implementation of linear correlation explanation (linear CorEx) and temporal correlation explanation (T-CorEx

Hrayr Harutyunyan 34 Nov 15, 2022
Lime: Explaining the predictions of any machine learning classifier

lime This project is about explaining what machine learning classifiers (or models) are doing. At the moment, we support explaining individual predict

Marco Tulio Correia Ribeiro 10.3k Jan 01, 2023
Contrastive Explanation (Foil Trees), developed at TNO/Utrecht University

Contrastive Explanation (Foil Trees) Contrastive and counterfactual explanations for machine learning (ML) Marcel Robeer (2018-2020), TNO/Utrecht Univ

M.J. Robeer 41 Aug 29, 2022
Visualization Toolbox for Long Short Term Memory networks (LSTMs)

Visualization Toolbox for Long Short Term Memory networks (LSTMs)

Hendrik Strobelt 1.1k Jan 04, 2023
🎆 A visualization of the CapsNet layers to better understand how it works

CapsNet-Visualization For more information on capsule networks check out my Medium articles here and here. Setup Use pip to install the required pytho

Nick Bourdakos 387 Dec 06, 2022
Interpretability and explainability of data and machine learning models

AI Explainability 360 (v0.2.1) The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datase

1.2k Dec 29, 2022
Visual analysis and diagnostic tools to facilitate machine learning model selection.

Yellowbrick Visual analysis and diagnostic tools to facilitate machine learning model selection. What is Yellowbrick? Yellowbrick is a suite of visual

District Data Labs 3.9k Dec 30, 2022
Visualize a molecule and its conformations in Jupyter notebooks/lab using py3dmol

Mol Viewer This is a simple package wrapping py3dmol for a single command visualization of a RDKit molecule and its conformations (embed as Conformer

Benoît BAILLIF 1 Feb 11, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
👋🦊 Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

👋🦊 Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

DEEL 343 Jan 02, 2023
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, TensorFlow Lite, Keras, Caffe, Darknet, ncnn,

Lutz Roeder 20.9k Dec 28, 2022