Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Overview

Detecting Invisible People

[ICCV 2021 Paper] [Website]

Tarasha Khurana, Achal Dave, Deva Ramanan

Introduction

This repository contains code for Detecting Invisible People. We extend the original DeepSORT algorithm to localize people even while they are completely occluded in a video. See the arXiv preprint for more information.

Dependencies

Create a conda environment with the given environment.yml file.

conda env create -f environment.yml

Preprocessing

The code expects the directory structure of your dataset in the MOT Challenge data format, which is approximately like the following:

MOT17/
-- train/
---- seq_01/
------ img1/
------ img1Depth/
------ gt/
------ det/
...
-- test/
---- seq_02/
------ img1/
------ img1Depth/
------ det/

The folder img1Depth stores the normalized disparity in .npy format. See Note. Originally, the paper runs the method on depth given by the MegaDepth depth estimator.

Given the above folder structure, generate the appearance features for your detections as described in the DeepSORT repository.

Running the method

The script run_forecast_filtering.sh will run the method with hyperparameters used in the paper. It will produce output .txt files in the MOT Challenge submission format. The bashscript has support for computing the metrics, but this has not been verified. Run the bashscript like the following:

bash run_forecast_filtering.sh experimentName

Note that in order to speed up code release, the dataset, preprocessed detections and output file paths are hardcoded in the files and will have to be manually changed.

Citing Detecting Invisible People

If you find this code useful in your research, please consider citing the following paper:

@inproceedings{khurana2021detecting,
  title={{Detecting Invisible People}},
  author={Khurana, Tarasha and Dave, Achal and Ramanan, Deva},
  booktitle={{IEEE/CVF International Conference on Computer Vision (ICCV)}},
  year={2021}
}

Warning

This is only the starter code that has not been cleaned for release. It currently only has verified support for running the method described in Detecting Invisible People, with the output tracks written in the MOT Challenge submission format. Although Top-k metric's code has been provided, this codebase does not guarantee support for the metric yet.

The hope is that you are able to benchmark this method for your CVPR 2022 submission and compute your own metrics on the method's output. If the method code does not work, please open an issue.

Note

Although it is easy to run any monocular depth estimator and store their output (usually given as disparity) in an .npy file, I have added a script in tools/demo_images.py which can save the .npy files for you. Note that this script should be run after setting up the MegaDepth codebase and copying this file to its root directory. I will likely also release my own depth maps for the MOT17 dataset over the Halloween weekend.

If you try to run the metrics, I have given my groundtruth JSON (as expected by pycocotools).

Owner
Tarasha Khurana
Tarasha Khurana
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
Let's create a tool to convert Thailand budget from PDF to CSV.

thailand-budget-pdf2csv Let's create a tool to convert Thailand Government Budgeting from PDF to CSV! รวมพลัง Dev แปลงงบ จาก PDF สู่ Machine-readable

Kao.Geek 88 Dec 19, 2022
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022