The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

Overview

VAENAR-TTS

This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis".

Samples | Paper | Pretrained Models

Usage

0. Dataset

  1. English: LJSpeech
  2. Mandarin: DataBaker(标贝)

1. Environment setup

conda env create -f environment.yml
conda activate vaenartts-env

2. Data pre-processing

For English using LJSpeech:

CUDA_VISIBLE_DEVICES= python preprocess.py --dataset ljspeech --data_dir /path/to/extracted/LJSpeech-1.1 --save_dir ./ljspeech

For Mandarin using Databaker(标贝):

CUDA_VISIBLE_DEVICES= python preprocess.py --dataset databaker --data_dir /path/to/extracted/biaobei --save_dir ./databaker

3. Training

For English using LJSpeech:

CUDA_VISIBLE_DEVICES=0 TF_FORCE_GPU_ALLOW_GROWTH=true python train.py --dataset ljspeech --log_dir ./lj-log_dir --test_dir ./lj-test_dir --data_dir ./ljspeech/tfrecords/ --model_dir ./lj-model_dir

For Mandarin using Databaker(标贝):

CUDA_VISIBLE_DEVICES=0 TF_FORCE_GPU_ALLOW_GROWTH=true python train.py --dataset databaker --log_dir ./db-log_dir --test_dir ./db-test_dir --data_dir ./databaker/tfrecords/ --model_dir ./db-model_dir

4. Inference (synthesize speech for the whole test set)

For English using LJSpeech:

CUDA_VISIBLE_DEVICES=0 TF_FORCE_GPU_ALLOW_GROWTH=true python inference.py --dataset ljspeech --test_dir ./lj-test-2000 --data_dir ./ljspeech/tfrecords/ --batch_size 16 --write_wavs true --draw_alignments true --ckpt_path ./lj-model_dir/ckpt-2000

For Mandarin using Databaker(标贝):

CUDA_VISIBLE_DEVICES=0 TF_FORCE_GPU_ALLOW_GROWTH=true python inference.py --dataset databaker --test_dir ./db-test-2000 --data_dir ./databaker/tfrecords/ --batch_size 16 --write_wavs true --draw_alignments true --ckpt_path ./db-model_dir/ckpt-2000

Reference

  1. XuezheMax/flowseq
  2. keithito/tacotron
Owner
THUHCSI
Human-Computer Speech Interaction Lab at Tsinghua University
THUHCSI
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
Joint deep network for feature line detection and description

SOLD² - Self-supervised Occlusion-aware Line Description and Detection This repository contains the implementation of the paper: SOLD² : Self-supervis

Computer Vision and Geometry Lab 427 Dec 27, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
Convert game ISO and archives to CD CHD for emulation on Linux.

tochd Convert game ISO and archives to CD CHD for emulation. Author: Tuncay D. Source: https://github.com/thingsiplay/tochd Releases: https://github.c

Tuncay 20 Jan 02, 2023
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
Tutorial on scikit-learn and IPython for parallel machine learning

Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra

Olivier Grisel 1.6k Dec 26, 2022
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022