Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Related tags

Deep LearningUDAT
Overview

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Unsupervised Domain Adaptation for Nighttime Aerial Tracking. In CVPR, pages 1-10, 2022.

featured

Overview

UDAT is an unsupervised domain adaptation framework for visual object tracking. This repo contains its Python implementation.

Paper | NAT2021 benchmark

Testing UDAT

1. Preprocessing

Before training, we need to preprocess the unlabelled training data to generate training pairs.

  1. Download the proposed NAT2021-train set

  2. Customize the directory of the train set in lowlight_enhancement.py and enhance the nighttime sequences

    cd preprocessing/
    python lowlight_enhancement.py # enhanced sequences will be saved at '/YOUR/PATH/NAT2021/train/data_seq_enhanced/'
  3. Download the video saliency detection model here and place it at preprocessing/models/checkpoints/.

  4. Predict salient objects and obtain candidate boxes

    python inference.py # candidate boxes will be saved at 'coarse_boxes/' as .npy
  5. Generate pseudo annotations from candidate boxes using dynamic programming

    python gen_seq_bboxes.py # pseudo box sequences will be saved at 'pseudo_anno/'
  6. Generate cropped training patches and a JSON file for training

    python par_crop.py
    python gen_json.py

2. Train

Take UDAT-CAR for instance.

  1. Apart from above target domain dataset NAT2021, you need to download and prepare source domain datasets VID and GOT-10K.

  2. Download the pre-trained daytime model (SiamCAR/SiamBAN) and place it at UDAT/tools/snapshot.

  3. Start training

    cd UDAT/CAR
    export PYTHONPATH=$PWD
    python tools/train.py

3. Test

Take UDAT-CAR for instance.

  1. For quick test, you can download our trained model for UDAT-CAR (or UDAT-BAN) and place it at UDAT/CAR/experiments/udatcar_r50_l234.

  2. Start testing

    python tools/test.py --dataset NAT

4. Eval

  1. Start evaluating
    python tools/eval.py --dataset NAT

Demo

Demo video

Reference

@Inproceedings{Ye2022CVPR,

title={{Unsupervised Domain Adaptation for Nighttime Aerial Tracking}},

author={Ye, Junjie and Fu, Changhong and Zheng, Guangze and Paudel, Danda Pani and Chen, Guang},

booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},

year={2022},

pages={1-10}

}

Acknowledgments

We sincerely thank the contribution of following repos: SiamCAR, SiamBAN, DCFNet, DCE, and USOT.

Contact

If you have any questions, please contact Junjie Ye at [email protected] or Changhong Fu at [email protected].

Owner
Intelligent Vision for Robotics in Complex Environment
Adaptive Vision for Robotics in Complex Environment
Intelligent Vision for Robotics in Complex Environment
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
The code uses SegFormer for Semantic Segmentation on Drone Dataset.

SegFormer_Segmentation The code uses SegFormer for Semantic Segmentation on Drone Dataset. The details for the SegFormer can be obtained from the foll

Dr. Sander Ali Khowaja 1 May 08, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Jan 01, 2023
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
[NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature"

IP-IRM [NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature". Codes will be relea

Wang Tan 67 Dec 24, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Gyeongsik Moon 29 Sep 24, 2022
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

MANU S PILLAI 5 Oct 10, 2021