ParmeSan: Sanitizer-guided Greybox Fuzzing

Related tags

Deep Learningparmesan
Overview

ParmeSan: Sanitizer-guided Greybox Fuzzing

License

ParmeSan is a sanitizer-guided greybox fuzzer based on Angora.

Published Work

USENIX Security 2020: ParmeSan: Sanitizer-guided Greybox Fuzzing.

The paper can be found here: ParmeSan: Sanitizer-guided Greybox Fuzzing

Building ParmeSan

See the instructions for Angora.

Basically run the following scripts to install the dependencies and build ParmeSan:

build/install_rust.sh
PREFIX=/path/to/install/llvm build/install_llvm.sh
build/install_tools.sh
build/build.sh

ParmeSan also builds a tool bin/llvm-diff-parmesan, which can be used for target acquisition.

Building a target

First build your program into a bitcode file using clang (e.g., base64.bc). Then build your target in the same way, but with your selected sanitizer enabled. To get a single bitcode file for larger projects, the easiest solution is to use gllvm.

# Build the bitcode files for target acquisition
USE_FAST=1 $(pwd)/bin/angora-clang -emit-llvm -o base64.fast.bc -c base64.bc
USE_FAST=1 $(pwd)/bin/angora-clang -fsanitize=address -emit-llvm -o base64.fast.asan.bc -c base64.bc
# Build the actual binaries to be fuzzed
USE_FAST=1 $(pwd)/bin/angora-clang -o base64.fast -c base64.bc
USE_TRACK=1 $(pwd)/bin/angora-clang -o base64.track -c base64.bc

Then acquire the targets using:

bin/llvm-diff-parmesan -json base64.fast.bc base64.fast.asan.bc

This will output a file targets.json, which you provide to ParmeSan with the -c flag.

For example:

$(pwd)/bin/fuzzer -c ./targets.json -i in -o out -t ./base64.track -- ./base64.fast -d @@

Options

ParmeSan's SanOpt option can speed up the fuzzing process by dynamically switching over to a sanitized binary only once the fuzzer reaches one of the targets specified in the targets.json file.

Enable using the -s [SANITIZED_BIN] option.

Build the sanitized binary in the following way:

USE_FAST=1 $(pwd)/bin/angora-clang -fsanitize=address -o base64.asan.fast -c base64.bc

Targets input file

The targets input file consisit of a JSON file with the following format:

{
  "targets":  [1,2,3,4],
  "edges":   [[1,2], [2,3]],
  "callsite_dominators": {"1": [3,4,5]}
}

Where the targets denote the identify of the cmp instruction to target (i.e., the id assigned by the __angora_trace_cmp() calls) and edges is the overlay graph of cmp ids (i.e., which cmps are connected to each other). The edges filed can be empty, since ParmeSan will add newly discovered edges automatically, but note that the performance will be better if you provide the static CFG.

It is also possible to run ParmeSan in pure directed mode (-D option), meaning that it will only consider new seeds if the seed triggers coverage that is on a direct path to one of the specified targets. Note that this requires a somewhat complete static CFG to work (an incomplete CFG might contain no paths to the targets at all, which would mean that no new coverage will be considered at all).

ParmeSan Screenshot

How to get started

Have a look at BUILD_TARGET.md for a step-by-step tutorial on how to get started fuzzing with ParmeSan.

FAQ

  • Q: I get a warning like ==1561377==WARNING: DataFlowSanitizer: call to uninstrumented function gettext when running the (track) instrumented program.
  • A: In many cases you can ignore this, but it will lose the taint (meaning worse performance). You need to add the function to the abilist (e.g., llvm_mode/dfsan_rt/dfsan/done_abilist.txt) and add a custom DFSan wrapper (in llvm_mode/dfsan_rt/dfsan/dfsan_custom.cc). See the Angora documentation for more info.
  • Q: I get an compiler error when building the track binary.
  • A: ParmeSan/ Angora uses DFSan for dynamic data-flow analysis. In certain cases building target applications can be a bit tricky (especially in the case of C++ targets). Make sure to disable as much inline assembly as possible and make sure that you link the correct libraries/ llvm libc++. Some programs also do weird stuff like an indirect call to a vararg function. This is not supported by DFSan at the moment, so the easy solution is to patch out these calls, or do something like indirect call promotion.
  • Q: llvm-diff-parmesan generates too many targets!
  • A: You can do target pruning using the scripts in tools/ (in particular tools/prune.py) or use ASAP to generate a target bitcode file with fewer sanitizer targets.

Docker image

You can also get the pre-built docker image of ParmeSan.

docker pull vusec/parmesan
docker run --rm -it vusec/parmesan
# In the container you can build objdump
/parmesan/misc/build_objdump.sh
Owner
VUSec
VUSec
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.

EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos. In this project, we provide the basic code for fitt

ZJU3DV 2.2k Jan 05, 2023
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
A torch implementation of "Pixel-Level Domain Transfer"

Pixel Level Domain Transfer A torch implementation of "Pixel-Level Domain Transfer". based on dcgan.torch. Dataset The dataset used is "LookBook", fro

Fei Xia 260 Sep 02, 2022
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
StyleMapGAN - Official PyTorch Implementation

StyleMapGAN - Official PyTorch Implementation StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing Hyunsu Kim, Yunj

NAVER AI 425 Dec 23, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
AdvStyle - Official PyTorch Implementation

AdvStyle - Official PyTorch Implementation Paper | Supp Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes. Huiting Ya

Beryl 37 Oct 21, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022