Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Overview

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A".

*** update at: 2021/05/25

This repo so far relates to the following work:

  • Transformer-based Multi-task Learning for Disaster Tweet Categorisation, (WiP paper, ISCRAM 2021)
  • Multi-task transfer learning for finding actionable information from crisis-related messages on social media, (paper, TREC 2020)

Setup

git clone https://github.com/wangcongcong123/crisis-mtl.git
pip install -r requirements.txt

Dataset preparation

  • Download the splits prepared for the system from here that contains three subdirectories for 2020a, 2020b and 2021a respectively.
  • Unzip the file to data/.

Training and submitting

# for 2020a
python run.py --dataset_name 2020a --model_name bert-base-uncased

# or for 2020b
python run.py --edition 2020b --model_name bert-base-uncased
python run.py --edition 2020b --model_name google/electra-base-discriminator
python run.py --edition 2020b --model_name microsoft/deberta-base
python run.py --edition 2020b --model_name distilbert-base-uncased
python submit_ensemble.py --edition 2020b


# or for 2021a
python run.py --edition 2021a --model_name bert-base-uncased
python run.py --edition 2021a --model_name google/electra-base-discriminator
python run.py --edition 2021a --model_name microsoft/deberta-base
python run.py --edition 2021a --model_name distilbert-base-uncased
python submit_ensemble.py --edition 2021a

To see our results compared to other participating runs in 2020a and 2020b, check the appendix of this overview paper. To know the details of our approach, check this ISCRAM-2021 paper on 2020a and this TREC-2020 paper on 2020b. The evaluation for 2021a is still in process so the results will be added as soon as they come out.

Citation

If you use the code in your research, please consider citing the following papers:

@article{wang2021,
author = {Wang, Congcong and Nulty, Paul and Lillis, David},
journal = {Proceedings of the International ISCRAM Conference},
keywords = {18th International Conference on Information Systems for Crisis Response and Management (ISCRAM 2021)},
number = {May},
title = {{Transformer-based Multi-task Learning for Disaster Tweet Categorisation}},
volume = {2021-May},
year = {2021}
}

@inproceedings{congcong2020multi,
 address = {Gaithersburg, MD},
 title = {Multi-task transfer learning for finding actionable information from crisis-related messages on social media},
 booktitle = {Proceedings of the Twenty-Nineth {{Text REtrieval Conference}} ({{TREC}} 2020)},
 author = {Wang, Congcong and Lillis, David},
 year = {2020},
}

Queries

Let me know if any questions via [email protected] or through creating an issue.

Owner
Congcong Wang
Ph.D [email protected], Crisis on Social Media, NLP, Machine Learning, IR
Congcong Wang
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)

Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G

7 Dec 22, 2022
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Our code requires Python ≥ 3.8 Installation For example, venv + pip: $ python3 -m venv env $ source env/bin/activate (env) $ pyt

9 May 10, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023