Supervised Contrastive Learning for Product Matching

Overview

Contrastive Product Matching

This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrastive Learning for Product Matching" by Ralph Peeters and Christian Bizer. ArXiv link. A comparison of the results to other systems using different benchmark datasets is found at Papers with Code - Entity Resolution.

  • Requirements

    Anaconda3

    Please keep in mind that the code is not optimized for portable or even non-workstation devices. Some of the scripts may require large amounts of RAM (64GB+) and GPUs. It is advised to use a powerful workstation or server when experimenting with some of the larger files.

    The code has only been used and tested on Linux (CentOS) servers.

  • Building the conda environment

    To build the exact conda environment used for the experiments, navigate to the project root folder where the file contrastive-product-matching.yml is located and run conda env create -f contrastive-product-matching.yml

    Furthermore you need to install the project as a package. To do this, activate the environment with conda activate contrastive-product-matching, navigate to the root folder of the project, and run pip install -e .

  • Downloading the raw data files

    Navigate to the src/data/ folder and run python download_datasets.py to automatically download the files into the correct locations. You can find the data at data/raw/

    If you are only interested in the separate datasets, you can download the WDC LSPC datasets and the deepmatcher splits for the abt-buy and amazon-google datasets on the respective websites.

  • Processing the data

    To prepare the data for the experiments, run the following scripts in that order. Make sure to navigate to the respective folders first.

    1. src/processing/preprocess/preprocess_corpus.py
    2. src/processing/preprocess/preprocess_ts_gs.py
    3. src/processing/preprocess/preprocess_deepmatcher_datasets.py
    4. src/processing/contrastive/prepare_data.py
    5. src/processing/contrastive/prepare_data_deepmatcher.py
  • Running the Contrastive Pre-training and Cross-entropy Fine-tuning

    Navigate to src/contrastive/

    You can find respective scripts for running the experiments of the paper in the subfolders lspc/ abtbuy/ and amazongoogle/. Note that you need to adjust the file path in these scripts for your system (replace your_path with path/to/repo).

    • Contrastive Pre-training

      To run contrastive pre-training for the abtbuy dataset for example use

      bash abtbuy/run_pretraining_clean_roberta.sh BATCH_SIZE LEARNING_RATE TEMPERATURE (AUG)

      You need to specify batch site, learning rate and temperature as arguments here. Optionally you can also apply data augmentation by passing an augmentation method as last argument (use all- for the augmentation used in the paper).

      For the WDC Computers data you need to also supply the size of the training set, e.g.

      bash lspc/run_pretraining_roberta.sh BATCH_SIZE LEARNING_RATE TEMPERATURE TRAIN_SIZE (AUG)

    • Cross-entropy Fine-tuning

      Finally, to use the pre-trained models for fine-tuning, run any of the fine-tuning scripts in the respective folders, e.g.

      bash abtbuy/run_finetune_siamese_frozen_roberta.sh BATCH_SIZE LEARNING_RATE TEMPERATURE (AUG)

      Please note, that BATCH_SIZE refers to the batch size used in pre-training. The fine-tuning batch size is locked to 64 but can be adjusted in the bash scripts if needed.

      Analogously for fine-tuning WDC computers, add the train size:

      bash lspc/run_finetune_siamese_frozen_roberta.sh BATCH_SIZE LEARNING_RATE TEMPERATURE TRAIN_SIZE (AUG)


Project based on the cookiecutter data science project template. #cookiecutterdatascience

Owner
Web-based Systems Group @ University of Mannheim
We explore technical and empirical questions concerning the development of global, decentralized information environments.
Web-based Systems Group @ University of Mannheim
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
Transparent Transformer Segmentation

Transparent Transformer Segmentation Introduction This repository contains the data and code for IJCAI 2021 paper Segmenting transparent object in the

谢恩泽 140 Jan 02, 2023
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight).

Curriculum by Smoothing (NeurIPS 2020) The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight). For any questions reg

PAIR Lab 36 Nov 23, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs

GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]

MIT HAN Lab 1k Jan 07, 2023
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022