SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

Overview

SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

PDF

Figure

Abstract

Explainable artificial intelligence has been gaining attention in the past few years. However, most existing methods are based on gradients or intermediate features, which are not directly involved in the decision-making process of the classifier. In this paper, we propose a slot attention-based classifier called SCOUTER for transparent yet accurate classification. Two major differences from other attention-based methods include: (a) SCOUTER's explanation is involved in the final confidence for each category, offering more intuitive interpretation, and (b) all the categories have their corresponding positive or negative explanation, which tells "why the image is of a certain category" or "why the image is not of a certain category." We design a new loss tailored for SCOUTER that controls the model's behavior to switch between positive and negative explanations, as well as the size of explanatory regions. Experimental results show that SCOUTER can give better visual explanations while keeping good accuracy on small and medium-sized datasets.

Model Structure

Structure Figure

SCOUTER is built on top of the recently-emerged slot attention, which offers an object-centric approach for image representation. Based on this approach, we propose an explainable slot attention (xSlot) module. The output from the xSlot module is directly used as the confidence values for each category and thus commonly used fully-connected (FC) layer-based classifiers are no longer necessary. The whole network, including the backbone, is trained with the SCOUTER loss, which provides control over the size of explanatory regions and switching between positive and negative explanations.

Usage

Enable distributed training (if desired)
python -m torch.distributed.launch --nproc_per_node=4 --use_env train.py --world_size 4

Imagenet

Training for Imagenet dataset (Base Model)
python train.py --dataset ImageNet --model resnest26d --batch_size 70 --epochs 20 \
--num_classes 10 --use_slot false \
--vis false --channel 2048 --freeze_layers 0 \
--dataset_dir ../data/imagenet/ILSVRC/Data/CLS-LOC/
Positive Scouter for Imagenet dataset
python train.py --dataset ImageNet --model resnest26d --batch_size 70 --epochs 20 \
--num_classes 10 --use_slot true --use_pre false --loss_status 1 --slots_per_class 1 \
--power 2 --to_k_layer 3 --lambda_value 1 --vis false --channel 2048 --freeze_layers 0 \
--dataset_dir ../data/imagenet/ILSVRC/Data/CLS-LOC/
Negative Scouter for Imagenet dataset
python train.py --dataset ImageNet --model resnest26d --batch_size 70 --epochs 20 \
--num_classes 10 --use_slot true --use_pre false --loss_status -1 --slots_per_class 1 \
--power 2 --to_k_layer 3 --lambda_value 1 --vis false --channel 2048 --freeze_layers 0 \
--dataset_dir ../data/imagenet/ILSVRC/Data/CLS-LOC/
Visualization of Positive Scouter for Imagenet dataset
python test.py --dataset ImageNet --model resnest26d --batch_size 70 --epochs 20 \
--num_classes 10 --use_slot true --use_pre false --loss_status 1 --slots_per_class 1 \
--power 2 --to_k_layer 3 --lambda_value 1 --vis true --channel 2048 --freeze_layers 0 \
--dataset_dir ../data/imagenet/ILSVRC/Data/CLS-LOC/
Visualization of Negative Scouter for Imagenet dataset
python test.py --dataset ImageNet --model resnest26d --batch_size 70 --epochs 20 \
--num_classes 10 --use_slot true --use_pre false --loss_status -1 --slots_per_class 1 \
--power 2 --to_k_layer 3 --lambda_value 1 --vis true --channel 2048 --freeze_layers 0 \
--dataset_dir ../data/imagenet/ILSVRC/Data/CLS-LOC/
Visualization using torchcam for Imagenet dataset
python torchcam_vis.py --dataset ImageNet --model resnest26d --batch_size 70 \
--num_classes 10 --grad true --use_pre true \
--dataset_dir ../data/imagenet/ILSVRC/Data/CLS-LOC/ \
--grad_min_level 0

MNIST Dataset

Pre-training for MNIST dataset
python train.py --dataset MNIST --model resnet18 --batch_size 64 --epochs 10 \
--num_classes 10 --use_slot false --vis false --aug false
Positive Scouter for MNIST dataset
python train.py --dataset MNIST --model resnet18 --batch_size 64 --epochs 10 \
--num_classes 10 --use_slot true --use_pre true --loss_status 1 --slots_per_class 1 \
--power 1 --to_k_layer 1 --lambda_value 1. --vis false --channel 512 --aug false
Negative Scouter for MNIST dataset
python train.py --dataset MNIST --model resnet18 --batch_size 64 --epochs 10 \
--num_classes 10 --use_slot true --use_pre false --loss_status -1 --slots_per_class 2 \
--power 2 --to_k_layer 1 --lambda_value 1.5 --vis false --channel 512 --aug false --freeze_layers 3
Visualization of Positive Scouter for MNIST dataset
python test.py --dataset MNIST --model resnet18 --batch_size 64 --epochs 10 \
--num_classes 10 --use_slot true --use_pre true --loss_status 1 --slots_per_class 1 \
--power 1 --to_k_layer 1 --lambda_value 1. --vis true --channel 512 --aug false
Visualization of Negative Scouter for MNIST dataset
python test.py --dataset MNIST --model resnet18 --batch_size 64 --epochs 10 \
--num_classes 10 --use_slot true --use_pre false --loss_status -1 --slots_per_class 2 \
--power 2 --to_k_layer 1 --lambda_value 1.5 --vis true --channel 512 --aug false --freeze_layers 3
Visualization using torchcam for MNIST dataset
python torchcam_vis.py --dataset MNIST --model resnet18 --batch_size 64 \
--num_classes 10 --grad true --use_pre true

Con-Text Dataset

Pre-training for ConText dataset
python train.py --dataset ConText --model resnest26d --batch_size 200 --epochs 100 \
--num_classes 30 --use_slot false --vis false \
--dataset_dir ../data/con-text/JPEGImages/
Positive Scouter for ConText dataset
python train.py --dataset ConText --model resnest26d --batch_size 200 --epochs 100 \
--num_classes 30 --use_slot true --use_pre true --loss_status 1 --slots_per_class 3 \
--power 2 --to_k_layer 3 --lambda_value .2 --vis false --channel 2048 \
--dataset_dir ../data/con-text/JPEGImages/
Negative Scouter for ConText dataset
python train.py --dataset ConText --model resnest26d --batch_size 200 --epochs 100 \
--num_classes 30 --use_slot true --use_pre true --loss_status -1 --slots_per_class 3 \
--power 2 --to_k_layer 3 --lambda_value 1. --vis false --channel 2048 \
--dataset_dir ../data/con-text/JPEGImages/
Visualization of Positive Scouter for ConText dataset
python test.py --dataset ConText --model resnest26d --batch_size 200 --epochs 100 \
--num_classes 30 --use_slot true --use_pre true --loss_status 1 --slots_per_class 3 \
--power 2 --to_k_layer 3 --lambda_value 1. --vis true --channel 2048 \
--dataset_dir ../data/con-text/JPEGImages/
Visualization of Negative Scouter for ConText dataset
python test.py --dataset ConText --model resnest26d --batch_size 200 --epochs 100 \
--num_classes 30 --use_slot true --use_pre true --loss_status -1 --slots_per_class 3 \
--power 2 --to_k_layer 3 --lambda_value 1. --vis true --channel 2048 \
--dataset_dir ../data/con-text/JPEGImages/
Visualization using torchcam for ConText dataset
python torchcam_vis.py --dataset ConText --model resnest26d --batch_size 200 \
--num_classes 30 --grad true --use_pre true \
--dataset_dir ../data/con-text/JPEGImages/

CUB-200 Dataset

Pre-training for CUB-200 dataset
python train.py --dataset CUB200 --model resnest50d --batch_size 64 --epochs 150 \
--num_classes 25 --use_slot false --vis false --channel 2048 \
--dataset_dir ../data/bird_200/CUB_200_2011/CUB_200_2011/
Positive Scouter for CUB-200 dataset
python train.py --dataset CUB200 --model resnest50d --batch_size 64 --epochs 150 \
--num_classes 25 --use_slot true --use_pre true --loss_status 1 --slots_per_class 5 \
--power 2 --to_k_layer 3 --lambda_value 10 --vis false --channel 2048 --freeze_layers 2 \
--dataset_dir ../data/bird_200/CUB_200_2011/CUB_200_2011/
Negative Scouter for CUB-200 dataset
python train.py --dataset CUB200 --model resnest50d --batch_size 64 --epochs 150 \
--num_classes 25 --use_slot true --use_pre true --loss_status -1 --slots_per_class 3 \
--power 2 --to_k_layer 3 --lambda_value 1. --vis false --channel 2048 --freeze_layers 2 \
--dataset_dir ../data/bird_200/CUB_200_2011/CUB_200_2011/
Visualization of Positive Scouter for CUB-200 dataset
python test.py --dataset CUB200 --model resnest50d --batch_size 64 --epochs 150 \
--num_classes 25 --use_slot true --use_pre true --loss_status 1 --slots_per_class 5 \
--power 2 --to_k_layer 3 --lambda_value 10 --vis true --channel 2048 --freeze_layers 2 \
--dataset_dir ../data/bird_200/CUB_200_2011/CUB_200_2011/
Visualization of Negative Scouter for CUB-200 dataset
python test.py --dataset CUB200 --model resnest50d --batch_size 64 --epochs 150 \
--num_classes 25 --use_slot true --use_pre true --loss_status -1 --slots_per_class 3 \
--power 2 --to_k_layer 3 --lambda_value 1. --vis true --channel 2048 --freeze_layers 2 \
--dataset_dir ../data/bird_200/CUB_200_2011/CUB_200_2011/
Visualization using torchcam for CUB-200 dataset
python torchcam_vis.py --dataset CUB200 --model resnest50d --batch_size 150 \
--num_classes 25 --grad true --use_pre true \
--dataset_dir ../data/bird_200/CUB_200_2011/CUB_200_2011/

Acknowledgements

This work was supported by Council for Science, Technology and Innovation (CSTI), cross-ministerial Strategic Innovation Promotion Program (SIP), "Innovative AI Hospital System" (Funding Agency: National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN)).

Publication

If you want to use this work, please consider citing the following paper.

@inproceedings{li2021scouter,
 author = {Liangzhi Li and Bowen Wang and Manisha Verma and Yuta Nakashima and Ryo Kawasaki and Hajime Nagahara},
 booktitle = {IEEE International Conference on Computer Vision (ICCV)},
 pages = {},
 title = {SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition},
 year = {2021}
}
Owner
Bowen Wang
scene-linear test images

Scene-Referred Image Collection A collection of OpenEXR Scene-Referred images, encoded as max 2048px width, DWAA 80 compression. All exrs are encoded

Gralk Klorggson 7 Aug 25, 2022
Table Extraction Tool

Tree Structure - Table Extraction Fonduer has been successfully extended to perform information extraction from richly formatted data such as tables.

HazyResearch 88 Jun 02, 2022
Open Source Computer Vision Library

OpenCV: Open Source Computer Vision Library Resources Homepage: https://opencv.org Courses: https://opencv.org/courses Docs: https://docs.opencv.org/m

OpenCV 65.7k Jan 03, 2023
Hiiii this is the Spanish for Linux and win 10 and in the near future the english version of PortScan my new tool on which you can see what ports are Open only with the IP adress.

PortScanner-by-IIT PortScanner es una herramienta programada en Python3. Como su nombre indica esta herramienta escanea los primeros 150 puertos de re

5 Sep 19, 2022
code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models"

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
Convert scans of handwritten notes to beautiful, compact PDFs

Convert scans of handwritten notes to beautiful, compact PDFs

Matt Zucker 4.8k Jan 01, 2023
Code release for Hu et al., Learning to Segment Every Thing. in CVPR, 2018.

Learning to Segment Every Thing This repository contains the code for the following paper: R. Hu, P. Dollár, K. He, T. Darrell, R. Girshick, Learning

Ronghang Hu 417 Oct 03, 2022
computer vision, image processing and machine learning on the web browser or node.

Image processing and Machine learning labs   computer vision, image processing and machine learning on the web browser or node note Fast Fourier Trans

ryohei tanaka 487 Nov 11, 2022
A curated list of awesome synthetic data for text location and recognition

awesome-SynthText A curated list of awesome synthetic data for text location and recognition and OCR datasets. Text location SynthText SynthText_Chine

Tianzhong 283 Jan 05, 2023
SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

NVIDIA Research Projects 31 Nov 22, 2022
Corner-based Region Proposal Network

Corner-based Region Proposal Network CRPN is a two-stage detection framework for multi-oriented scene text. It employs corners to estimate the possibl

xhzdeng 140 Nov 04, 2022
ARU-Net - Deep Learning Chinese Word Segment

ARU-Net: A Neural Pixel Labeler for Layout Analysis of Historical Documents Contents Introduction Installation Demo Training Introduction This is the

128 Sep 12, 2022
Tools for manipulating and evaluating the hOCR format for representing multi-lingual OCR results by embedding them into HTML.

hocr-tools About About the code Installation System-wide with pip System-wide from source virtualenv Available Programs hocr-check -- check the hOCR f

OCRopus 285 Dec 08, 2022
A bot that plays TFT using OCR. Keeps track of bench, board, items, and plays the user defined team comp.

NOTES: To ensure best results, make sure you are running this on a computer that has decent specs. 1920x1080 fullscreen is required in League, game mu

francis 125 Dec 30, 2022
Pixie - A full-featured 2D graphics library for Python

Pixie - A full-featured 2D graphics library for Python Pixie is a 2D graphics library similar to Cairo and Skia. pip install pixie-python Features: Ty

treeform 65 Dec 30, 2022
Um simples projeto para fazer o reconhecimento do captcha usado pelo jogo bombcrypto

CaptchaSolver - LEIA ISSO 😓 Para iniciar o codigo: pip install -r requirements.txt python captcha_solver.py Se você deseja pegar ver o resultado das

Kawanderson 50 Mar 21, 2022
A toolbox of scene text detection and recognition

FudanOCR This toolbox contains the implementations of the following papers: Scene Text Telescope: Text-Focused Scene Image Super-Resolution [Chen et a

FudanVIC Team 170 Dec 26, 2022
Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. This Neural Network (NN) model recognizes the text contained in the images of segmented words.

Handwritten-Text-Recognition Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. T

27 Jan 08, 2023
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI.

MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with one

Project MONAI 344 Dec 23, 2022
Markup for note taking

Subtext: markup for note-taking Subtext is a text-based, block-oriented hypertext format. It is designed with note-taking in mind. It has a simple, pe

Gordon Brander 224 Jan 01, 2023