BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

Overview

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting

Updated on December 10, 2021 (Release all dataset(2021 videos))

Updated on June 06, 2021 (Added evaluation metric)

Released on May 26, 2021

Description

YouTube Demo | Homepage | Downloads(Google Drive) Downloads(Baidu Drive)(password:go10) | Paper

We create a new large-scale benchmark dataset named Bilingual, Open World Video Text(BOVText), the first large-scale and multilingual benchmark for video text spotting in a variety of scenarios. All data are collected from KuaiShou and YouTube

There are mainly three features for BOVText:

  • Large-Scale: we provide 2,000+ videos with more than 1,750,000 frame images, four times larger than the existing largest dataset for text in videos.
  • Open Scenario:BOVText covers 30+ open categories with a wide selection of various scenarios, e.g., life vlog, sports news, automatic drive, cartoon, etc. Besides, caption text and scene text are separately tagged for the two different representational meanings in the video. The former represents more theme information, and the latter is the scene information.
  • Bilingual:BOVText provides Bilingual text annotation to promote multiple cultures live and communication.

Tasks and Metrics

The proposed BOVText support four task(text detection, recognition, tracking, spotting), but mainly includes two tasks:

  • Video Frames Detection.
  • Video Frames Recognition.
  • Video Text Tracking.
  • End to End Text Spotting in Videos.

MOTP (Multiple Object Tracking Precision)[1], MOTA (Multiple Object Tracking Accuracy) and IDF1[3,4] as the three important metrics are used to evaluate task1 (text tracking) for MMVText. In particular, we make use of the publicly available py-motmetrics library (https://github.com/cheind/py-motmetrics) for the establishment of the evaluation metric.

Word recognition evaluation is case-insensitive, and accent-insensitive. The transcription '###' or "#1" is special, as it is used to define text areas that are unreadable. During the evaluation, such areas will not be taken into account: a method will not be penalised if it does not detect these words, while a method that detects them will not get any better score.

Task 3 for Text Tracking Evaluation

The objective of this task is to obtain the location of words in the video in terms of their affine bounding boxes. The task requires that words are both localised correctly in every frame and tracked correctly over the video sequence. Please output the json file as following:

Output
.
├-Cls10_Program_Cls10_Program_video11.json
│-Cls10_Program_Cls10_Program_video12.json
│-Cls10_Program_Cls10_Program_video13.json
├-Cls10_Program_Cls10_Program_video14.json
│-Cls10_Program_Cls10_Program_video15.json
│-Cls10_Program_Cls10_Program_video16.json
│-Cls11_Movie_Cls11_Movie_video17.json
│-Cls11_Movie_Cls11_Movie_video18.json
│-Cls11_Movie_Cls11_Movie_video19.json
│-Cls11_Movie_Cls11_Movie_video20.json
│-Cls11_Movie_Cls11_Movie_video21.json
│-...


And then cd Evaluation_Protocol/Task1_VideoTextTracking, run following script:

python evaluation.py --groundtruths ./Test/Annotation --tests ./output

Task 4 for Text Spotting Evaluation

Please output the json file like task 3.

cd Evaluation_Protocol/Task2_VideoTextSpotting, run following script:

python evaluation.py --groundtruths ./Test/Annotation --tests ./output

Ground Truth (GT) Format and Downloads

We create a single JSON file for each video in the dataset to store the ground truth in a structured format, following the naming convention: gt_[frame_id], where frame_id refers to the index of the video frame in the video

In a JSON file, each gt_[frame_id] corresponds to a list, where each line in the list correspond to one word in the image and gives its bounding box coordinates, transcription, text type(caption or scene text) and tracking ID, in the following format:

{

“frame_1”:  
            [
			{
				"points": [x1, y1, x2, y2, x3, y3, x4, y4],
				“tracking ID”: "1" ,
				“transcription”: "###",
				“category”: title/caption/scene text,
				“language”: Chinese/English,
				“ID_transcription“:  complete words for the whole trajectory
			},

               …

            {
				"points": [x1, y1, x2, y2, x3, y3, x4, y4],
				“tracking ID”: "#" ,
				“transcription”: "###",
				“category”: title/caption/scene text,
				“language”: Chinese/English,
				“ID_transcription“:  complete words for the whole trajectory
			}
			],

“frame_2”:  
            [
			{
				"points": [x1, y1, x2, y2, x3, y3, x4, y4],
				“tracking ID”: "1" ,
				“transcription”: "###",
				“category”: title/caption/scene text,
				“language”: Chinese/English,
				“ID_transcription“:  complete words for the whole trajectory
			},

               …

            {
				"points": [x1, y1, x2, y2, x3, y3, x4, y4],
				“tracking ID”: "#" ,
				“transcription”: "###",
				“category”: title/caption/scene text,
				“language”: Chinese/English,
				“ID_transcription“:  complete words for the whole trajectory
			}
			],

……

}

Downloads

Training data and the test set can be found from Downloads(Google Drive) Downloads(Baidu Drive)(password:go10).

Table Ranking

Important Announcements: we expand the data size from 1,850 videos to 2,021 videos, causing the performance difference between arxiv paper and the NeurIPS version. Therefore, please refer to the latest arXiv paper, while existing ambiguity.

</tbody>
Method Text Tracking Performance/% End to End Video Text Spotting/% Published at
MOTA MOTP IDP IDR IDF1 MOTA MOTP IDP IDR IDF1
EAST+CRNN -21.6 75.8 29.9 26.5 28.1 -79.3 76.3 6.8 6.9 6.8 -
TransVTSpotter 68.2 82.1 71.0 59.7 64.7 -1.4 82.0 43.6 38.4 40.8 -

Maintenance Plan and Goal

The author will plays an active participant in the video text field and maintaining the dataset at least before 2023 years. And the maintenance plan as the following:

  • Merging and releasing the whole dataset after further review. (Around before November, 2021)
  • Updating evaluation guidance and script code for four tasks(detection, tracking, recognition, and spotting). (Around before November, 2021)
  • Hosting a competition concerning our work for promotional and publicity. (Around before March,2022)

More video-and-language tasks will be supported in our dataset:

  • Text-based Video Retrieval[5] (Around before March,2022)
  • Text-based Video Caption[6] (Around before September,2022)
  • Text-based VQA[7][8] (TED)

TodoList

  • update evaluation metric
  • update data and annotation link
  • update evaluation guidance
  • update Baseline(TransVTSpotter)
  • ...

Citation

@article{wu2021opentext,
  title={A Bilingual, OpenWorld Video Text Dataset and End-to-end Video Text Spotter with Transformer},
  author={Weijia Wu, Debing Zhang, Yuanqiang Cai, Sibo Wang, Jiahong Li, Zhuang Li, Yejun Tang, Hong Zhou},
  journal={35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks},
  year={2021}
}

Organization

Affiliations: Zhejiang University, MMU of Kuaishou Technology

Authors: Weijia Wu(Zhejiang University), Debing Zhang(Kuaishou Technology)

Feedback

Suggestions and opinions of this dataset (both positive and negative) are greatly welcome. Please contact the authors by sending email to [email protected].

License and Copyright

The project is open source under CC-by 4.0 license (see the LICENSE file).

Only for research purpose usage, it is not allowed for commercial purpose usage.

The videos were partially downloaded from YouTube and some may be subject to copyright. We don't own the copyright of those videos and only provide them for non-commercial research purposes only. For each video from YouTube, while we tried to identify video that are licensed under a Creative Commons Attribution license, we make no representations or warranties regarding the license status of each video and you should verify the license for each image yourself.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 License.

References

[1] Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., Roth, S., Schindler, K., & Leal-Taixe, L. (2019). CVPR19 Tracking and Detection Challenge: How crowded can it get?. arXiv preprint arXiv:1906.04567.

[2] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.

[3] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.

[4] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.

[5] Anand Mishra, Karteek Alahari, and CV Jawahar. Image retrieval using textual cues. In Proceedings of the IEEE International Conference on Computer Vision, pages 3040–3047, 2013.

[6] Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: a dataset for image captioning with reading comprehension. In European Conference on Computer Vision, pages 742–758. Springer, 2020.

[7] Minesh Mathew, Dimosthenis Karatzas, C. V. Jawahar, "DocVQA: A Dataset for VQA on Document Images", arXiv:2007.00398 [cs.CV], WACV 2021

[8] Minesh Mathew, Ruben Tito, Dimosthenis Karatzas, R. Manmatha, C.V. Jawahar, "Document Visual Question Answering Challenge 2020", arXiv:2008.08899 [cs.CV], DAS 2020

Owner
weijiawu
computer version, OCR I am looking for a research intern or visiting chance.
weijiawu
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
A spherical CNN for weather forecasting

DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew

DeepSphere 47 Dec 25, 2022
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
Fermi Problems: A New Reasoning Challenge for AI

Fermi Problems: A New Reasoning Challenge for AI Fermi Problems are questions whose answer is a number that can only be reasonably estimated as a prec

AI2 15 May 28, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022