Secure Distributed Training at Scale

Related tags

Deep Learningbtard
Overview

Secure Distributed Training at Scale

This repository contains the implementation of experiments from the paper

"Secure Distributed Training at Scale"

Eduard Gorbunov*, Alexander Borzunov*, Michael Diskin, Max Ryabinin

[PDF] arxiv.org

Overview

The code is organized as follows:

  • ./resnet is a setup for training ResNet18 on CIFAR-10 with simulated byzantine attackers
  • ./albert runs distributed training of ALBERT-large with byzantine attacks using cloud instances

ResNet18

This setup uses torch.distributed for parallelism.

Requirements
  • Python >= 3.7 (we recommend Anaconda python 3.8)
  • Dependencies: pip install jupyter torch>=1.6.0 torchvision>=0.7.0 tensorboard
  • A machine with at least 16GB RAM and either a GPU with >24GB memory or 3 GPUs with at least 10GB memory each.
  • We tested the code on Ubuntu Server 18.04, it should work with all major linux distros. For Windows, we recommend using Docker (e.g. via Kitematic).

Running experiments: please open ./resnet/RunExperiments.ipynb and follow the instructions in that notebook. The learning curves will be available in Tensorboard logs: tensorboard --logdir btard/resnet.

ALBERT

This setup spawns distributed nodes that collectively train ALBERT-large on wikitext103. It uses a version of the hivemind library modified so that some peers may be programmed to become Byzantine and perform various types of attacks on the training process.

Requirements
  • The experiments are optimized for 16 instances each with a single T4 GPU.

    • For your convenience, we provide a cost-optimized AWS starter notebook that can run experiments (see below)
    • While it can be simulated with a single node, doing so will require additional tuning depending on the number and type of GPUs available.
  • If running manually, please install the core library on each machine:

    • The code requires python >= 3.7 (we recommend Anaconda python 3.8)
    • Install the library: cd ./albert/hivemind/ && pip install -e .
    • If successful, it should become available as import hivemind

Running experiments: For your convenience, we provide a unified script that runs a distributed ALBERT experiment in the AWS cloud ./albert/experiments/RunExperiments.ipynb using preemptible T4 instances. The learning curves will be posted to the Wandb project specified during the notebook setup.

Expected cloud costs: a training experiment with 16 hosts takes up approximately $60 per day for g4dn.xlarge and $90 per day for g4dn.2xlarge instances. One can expect a full training experiment to converge in ≈3 days. Once the model is trained, one can restart training from intermediate checkpoints and simulate attacks. One attack episode takes up 4-5 hours depending on cloud availability.

Owner
Yandex Research
Yandex Research
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
Ludwig Benchmarking Toolkit

Ludwig Benchmarking Toolkit The Ludwig Benchmarking Toolkit is a personalized benchmarking toolkit for running end-to-end benchmark studies across an

HazyResearch 17 Nov 18, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
labelpix is a graphical image labeling interface for drawing bounding boxes

Welcome to labelpix 👋 labelpix is a graphical image labeling interface for drawing bounding boxes. 🏠 Homepage Install pip install -r requirements.tx

schissmantics 26 May 24, 2022
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 04, 2023
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022