The `rtdl` library + The official implementation of the paper

Overview

Revisiting Tabular Deep Learning

This repository contains:

  • the official implementation of the paper "Revisiting Deep Learning Models for Tabular Data" (link)
  • rtdl (Revisiting Tabular Deep Learning):
    • It is a PyTorch-based package that provides a user-friendly API for the main models (FT-Transformer, ResNet, MLP) used in the paper
    • It can be used by practitioners looking for Deep Learning models for tabular data
    • It can serve as a source of baselines for researchers (excluding FT-Transformer, see the warning below)
    • You can follow releases by hitting "Watch" / "Custom" / "Releases" in the right upper corner of the GitHub interface
    • See the website for more details
    • See the discussion

Warning: if you are a researcher (not a practitioner) and plan to use the FT-Transformer model as a baseline in your paper, please, use the original implementation from ft_transformer.py. We will remove this limitation soon (i.e. rtdl will become the recommended way to use FT-Transformer in papers).

The rest of this document is dedicated to the implementation of the paper.


Note that the paper reports results based on thousands of experiments, so there can be rough edges in the implementation. Feel free to open issues and ask questions in discussions.

1. The main results

The main table, where all models are sorted by their final (test) performance on all datasets, can be found in the last cell of this notebook.

2. Overview

The code is organized as follows:

  • bin:
    • training code for all the models
    • ensemble.py performs ensembling
    • tune.py tunes models
    • report.ipynb summarizes all the results
    • create_tables.ipynb builds Table 1 and Table 2 from the paper
    • code for the section "When FT-Transformer is better than ResNet?" of the paper:
      • analysis_gbdt_vs_nn.py runs the experiments
      • create_synthetic_data_plots.py builds plots
  • lib contains common tools used by programs in bin
  • output contains configuration files (inputs for programs in bin) and results (metrics, tuned configurations, etc.)
  • the remaining files and directories are mostly related to the rtdl package

The results are represented with numerous JSON files that are scatterd all over the output directory. The notebook bin/report.ipynb summarizes them into a report (a much more detailed version of Table 1 and Table 2 from the paper). Use this notebook to:

  • build a detailed report where all the models are compared on all datasets
  • get insights about test, validation and train scores

3. Setup the environment

3.1. PyTorch environment

Install conda

export REPO_DIR=<ABSOLUTE path to the desired repository directory>
git clone <repository url> $REPO_DIR
cd $REPO_DIR

conda create -n rtdl python=3.8.8
conda activate rtdl

conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1.243 numpy=1.19.2 -c pytorch -y
conda install cudnn=7.6.5 -c anaconda -y
pip install -r requirements.txt
conda install -c conda-forge nodejs -y
jupyter labextension install @jupyter-widgets/jupyterlab-manager

# if the following commands do not succeed, update conda
conda env config vars set PYTHONPATH=${PYTHONPATH}:${REPO_DIR}
conda env config vars set PROJECT_DIR=${REPO_DIR}
conda env config vars set LD_LIBRARY_PATH=${CONDA_PREFIX}/lib:${LD_LIBRARY_PATH}
conda env config vars set CUDA_HOME=${CONDA_PREFIX}
conda env config vars set CUDA_ROOT=${CONDA_PREFIX}

conda deactivate
conda activate rtdl

3.2. TensorFlow environment

This environment is needed only for experimenting with TabNet. For all other cases use the PyTorch environment.

The instructions are the same as for the PyTorch environment (including installation of PyTorch!), but:

  • python=3.7.10
  • cudatoolkit=10.0
  • right before pip install -r requirements.txt do the following:
    • pip install tensorflow-gpu==1.14
    • comment out tensorboard in requirements.txt

3.3. Data

LICENSE: by downloading our dataset you accept licenses of all its components. We do not impose any new restrictions in addition to those licenses. You can find the list of sources in the section "References" of our paper.

  1. Download the data: wget https://www.dropbox.com/s/o53umyg6mn3zhxy/rtdl_data.tar.gz?dl=1
  2. Move the archive to the root of the repository: mv rtdl_data.tar.gz $PROJECT_DIR
  3. Go to the root of the repository: cd $PROJECT_DIR
  4. Unpack the archive: tar -xvf rtdl_data.tar.gz

4. Tutorial (how to reproduce results)

This section only provides specific commands with few comments. After completing the tutorial, we recommend checking the next section for better understanding of how to work with the repository. It will also help to better understand the tutorial.

In this tutorial, we will reproduce the results for MLP on the California Housing dataset. We will cover:

  • tuning
  • evaluation
  • ensembling
  • comparing models with each other

Note that the chances to get exactly the same results are rather low, however, they should not differ much from ours. Before running anything, go to the root of the repository and explicitly set CUDA_VISIBLE_DEVICES (if you plan to use GPU):

cd $PROJECT_DIR
export CUDA_VISIBLE_DEVICES=0

4.1. Check the environment

Before we start, let's check that the environment is configured successfully. The following commands should train one MLP on the California Housing dataset:

mkdir draft
cp output/california_housing/mlp/tuned/0.toml draft/check_environment.toml
python bin/mlp.py draft/check_environment.toml

The result should be in the directory draft/check_environment. For now, the content of the result is not important.

4.2. Tuning

Our config for tuning MLP on the California Housing dataset is located at output/california_housing/mlp/tuning/0.toml. In order to reproduce the tuning, copy our config and run your tuning:

# you can choose any other name instead of "reproduced.toml"; it is better to keep this
# name while completing the tutorial
cp output/california_housing/mlp/tuning/0.toml output/california_housing/mlp/tuning/reproduced.toml
# let's reduce the number of tuning iterations to make tuning fast (and ineffective)
python -c "
from pathlib import Path
p = Path('output/california_housing/mlp/tuning/reproduced.toml')
p.write_text(p.read_text().replace('n_trials = 100', 'n_trials = 5'))
"
python bin/tune.py output/california_housing/mlp/tuning/reproduced.toml

The result of your tuning will be located at output/california_housing/mlp/tuning/reproduced, you can compare it with ours: output/california_housing/mlp/tuning/0. The file best.toml contains the best configuration that we will evaluate in the next section.

4.3. Evaluation

Now we have to evaluate the tuned configuration with 15 different random seeds.

# create a directory for evaluation
mkdir -p output/california_housing/mlp/tuned_reproduced

# clone the best config from the tuning stage with 15 different random seeds
python -c "
for seed in range(15):
    open(f'output/california_housing/mlp/tuned_reproduced/{seed}.toml', 'w').write(
        open('output/california_housing/mlp/tuning/reproduced/best.toml').read().replace('seed = 0', f'seed = {seed}')
    )
"

# train MLP with all 15 configs
for seed in {0..14}
do
    python bin/mlp.py output/california_housing/mlp/tuned_reproduced/${seed}.toml
done

Our directory with evaluation results is located right next to yours, namely, at output/california_housing/mlp/tuned.

4.4. Ensembling

# just run this single command
python bin/ensemble.py mlp output/california_housing/mlp/tuned_reproduced

Your results will be located at output/california_housing/mlp/tuned_reproduced_ensemble, you can compare it with ours: output/california_housing/mlp/tuned_ensemble.

4.5. "Visualize" results

Use bin/report.ipynb:

  • find the cell with the list of results; the list includes many lines of this kind: ('algorithm/experiment', N_SEEDS, ENSEMBLES_3_5, 'PrettyAlgorithmName', datasets)
  • uncomment the line relevant to the tutorial; it should look like this: ('mlp/tuned_reproduced', N_SEEDS, ENSEMBLES_3_5, 'MLP | reproduced', [CALIFORNIA]),
  • run the notebook from scratch

4.6. What about other models and datasets?

Similar steps can be performed for all models and datasets. The tuning process is slightly different in the case of grid search: you have to run all desired configurations and manually choose the best one based on the validation performance. For example, see output/epsilon/ft_transformer.

5. How to work with the repository

5.1. How to run scripts

You should run Python scripts from the root of the repository. Most programs expect a configuration file as the only argument. The output will be a directory with the same name as the config, but without the extention. Configs are written in TOML. The lists of possible arguments for the programs are not provided and should be inferred from scripts (usually, the config is represented with the args variable in scripts). If you want to use CUDA, you must explicitly set the CUDA_VISIBLE_DEVICES environment variable. For example:

# The result will be at "path/to/my_experiment"
CUDA_VISIBLE_DEVICES=0 python bin/mlp.py path/to/my_experiment.toml

# The following example will run WITHOUT CUDA
python bin/mlp.py path/to/my_experiment.toml

If you are going to use CUDA all the time, you can save the environment variable in the Conda environment:

conda env config vars set CUDA_VISIBLE_DEVICES="0"

The -f (--force) option will remove the existing results and run the script from scratch:

python bin/whatever.py path/to/config.toml -f  # rewrites path/to/config

bin/tune.py supports continuation:

python bin/tune.py path/to/config.toml --continue

5.2. stats.json and other results

For all scripts, stats.json is the most important part of output. The content varies from program to program. It can contain:

  • metrics
  • config that was passed to the program
  • hardware info
  • execution time
  • and other information

Predictions for train, validation and test sets are usually also saved.

5.3. Conclusion

Now, you know everything you need to reproduce all the results and extend this repository for your needs. The tutorial also should be more clear now. Feel free to open issues and ask questions.

6. How to cite

@article{gorishniy2021revisiting,
    title={Revisiting Deep Learning Models for Tabular Data},
    author={Yury Gorishniy and Ivan Rubachev and Valentin Khrulkov and Artem Babenko},
    journal={arXiv},
    volume={2106.11959},
    year={2021},
}
Comments
  • Fix MLP.make_baseline() return type

    Fix MLP.make_baseline() return type

    Return object of type cls, not MLP, in MLP.make_baseline(). Otherwise, child classes inheriting from MLP constructed using the .make_baseline() method always have type MLP (instead of the type of the child class).

    opened by jpgard 6
  • Is it possible to provide a scikit-learn interface?

    Is it possible to provide a scikit-learn interface?

    This project is interesting and I want to use it as the baseline algorithm for my paper. However, it seems that I need to take several steps in order to make a prediction. Consequently, is it possible to provide a scikit-learn interface for making a convenient comparison between different algorithms?

    opened by hengzhe-zhang 5
  • Cannot link in the document of zero

    Cannot link in the document of zero

    Hi! I am trying to understand the usage of python package zero, which is used in the example of rtdl. But I found that the linkage in the comment line of the code is not available anymore.

    Here is the invalid link: https://yura52.github.io/zero/0.0.4/reference/api/zero.improve_reproducibility.html

    I am wondering is there any other document? Thank you!

    Regards.

    opened by WuZheng326 4
  • embedding of categorical variables

    embedding of categorical variables

    Hi Yury,

    Thank you for your excellent work. I get a problem when handling categorical features. Do I need to pre-train the embedding layer when applying it to the data processing or just to attach the embedding layer to the model and train it with the model.

    opened by lhq12 3
  • Add ⭐️Weights & Biases⭐️ Logging

    Add ⭐️Weights & Biases⭐️ Logging

    This PR aims to add basic Weights and Biases Metric Logging by appending to the existing codebase with minimal changes while supporting Checkpoint uploads as Weights and Biases Artifacts.

    Wherever needed, I have used the existing Weights and Biases integrations viz. LightGBM and XGBoost.

    I have validated the performance of all the proposed runs by running 150+ runs, which can be viewed on this project page and in detail in an accompanying blog post.

    opened by SauravMaheshkar 3
  • Bugs in piecewise-linear encoding

    Bugs in piecewise-linear encoding

    1. Here, indices = as_tensor(values) must be changed to this:
    indices = as_tensor(indices)
    
    1. Here, np.array(d_encoding) must be changed to this:
    torch.tensor(d_encoding).to(indices)
    
    1. Here, the argument dtype=X.dtype is missing for np.array

    2. Here, .to(X) is missing

    3. Here, it must be:

    is_last_bin = bin_indices + 1 == as_tensor(list(map(len, bin_edges)))
    
    opened by Yura52 2
  • LGBMRegressor on California Housing dataset is 0.68 >> 0.46

    LGBMRegressor on California Housing dataset is 0.68 >> 0.46

    I use the sample code to prepare the dataset:

    device = 'cpu'
    dataset = sklearn.datasets.fetch_california_housing()
    task_type = 'regression'
    
    X_all = dataset['data'].astype('float32')
    y_all = dataset['target'].astype('float32')
    n_classes = None
    
    X = {}
    y = {}
    X['train'], X['test'], y['train'], y['test'] = sklearn.model_selection.train_test_split(
        X_all, y_all, train_size=0.8
    )
    X['train'], X['val'], y['train'], y['val'] = sklearn.model_selection.train_test_split(
        X['train'], y['train'], train_size=0.8
    )
    
    # not the best way to preprocess features, but enough for the demonstration
    preprocess = sklearn.preprocessing.StandardScaler().fit(X['train'])
    X = {
        k: torch.tensor(preprocess.fit_transform(v), device=device)
        for k, v in X.items()
    }
    y = {k: torch.tensor(v, device=device) for k, v in y.items()}
    
    # !!! CRUCIAL for neural networks when solving regression problems !!!
    y_mean = y['train'].mean().item()
    y_std = y['train'].std().item()
    y = {k: (v - y_mean) / y_std for k, v in y.items()}
    
    y = {k: v.float() for k, v in y.items()}
    

    And I train a LGBMRegressor with the default hyper parameters:

    model = lgb.LGBMRegressor()
    model.fit(X['train'], y['train'])
    

    But when I evaluate on the test fold, I found the performance is 0.68:

    >>> test_pred = model.predict(X['test'])
    >>> test_pred = torch.from_numpy(test_pred)
    >>> rmse = torch.nn.functional.mse_loss(
    >>>     test_pred.view(-1), y['test'].view(-1)) ** 0.5 * y_std
    >>> print(f'Test RMSE: {rmse:.2f}.')
    Test RMSE: 0.68.
    

    Even using the model from rtdl gives me 0.56 RMSE:

    (epoch) 57 (batch) 0 (loss) 0.1885
    (epoch) 57 (batch) 10 (loss) 0.1315
    (epoch) 57 (batch) 20 (loss) 0.1735
    (epoch) 57 (batch) 30 (loss) 0.1197
    (epoch) 57 (batch) 40 (loss) 0.1952
    (epoch) 57 (batch) 50 (loss) 0.1167
    Epoch 057 | Validation score: 0.7334 | Test score: 0.5612 <<< BEST VALIDATION EPOCH
    

    Is there anything I miss? How can I reproduce the performance in your paper? Thanks!

    opened by fingertap 2
  • Regression results about the RTDL models.

    Regression results about the RTDL models.

    Hi, you did a great implementation of the tab-transformer. However, when I use your example notebook to do the simple regression for the Sin(x), neither the baseline model or the FTTransformer give the good results. I have no idea about this and want to know why.

    Here is the link

    opened by linkedlist771 1
  • typos in CatEmbeddings

    typos in CatEmbeddings

    1. link. The variable cardinalities_and_dimensions does not exist
    2. link. The condition looks broken. Solution: simplify it and remove the word "spec" from the error message.
    opened by Yura52 0
  • Running error, prenormalization is not a class variable

    Running error, prenormalization is not a class variable

    The code crushes at this line, because prenormalization is not in self

    https://github.com/Yura52/rtdl/blob/b130dd2e596c17109bef825bc9c8608e1ae617cc/rtdl/nn/_backbones.py#L627

    opened by zahar-chikishev 0
  • How to resume training?

    How to resume training?

    I ran your model in colab for a few hours before google terminated it. I used pickle.dump/load to store the trained model. It works to make predictions but it doesn't seem to be able to resume training.

          if progress.success:
              print(' <<< BEST VALIDATION EPOCH', end='')
              with open(mydrive+jobname, 'wb') as filehandler:
                dump((model, y_std, y_mean),filehandler)
                #we could see result was improving
    
            with open(mydrive+jobname, 'rb') as filehandler:
              model, y_std, y_mean = load(filehandler)
            pred=model(batch,None) #this seems to work
            for epoch in range(1, n_epochs + 1):
                for iteration, batch_idx in enumerate(train_loader):
                    model.train()
                    optimizer.zero_grad()
                    x_batch = X['train'][batch_idx]
                    y_batch = y['train'][batch_idx]
                    loss = loss_fn(apply_model(x_batch).squeeze(1), y_batch)
                    loss.backward()
                    optimizer.step()
                    if iteration % report_frequency == 0:
                        print(f'(epoch) {epoch} (batch) {iteration} (loss) {loss.item():.4f}')
                    #no improvement any more. even the model was dumped immediately after created.
    

    what is the right way to store the model so that I can resume the training?

    opened by jerronl 0
  • A scikit-learn interface for RTDL package.

    A scikit-learn interface for RTDL package.

    Hello! I have written a scikit-learn interface for the RTDL package (https://github.com/hengzhe-zhang/scikit-rtdl). I rely on the skorch to avoid coding errors, and set the default parameters based on the parameters presented in your paper. Hoping you will like it!

    opened by hengzhe-zhang 1
Releases(v0.0.13)
  • v0.0.13(Mar 16, 2022)

  • v0.0.12(Mar 10, 2022)

  • v0.0.10(Feb 28, 2022)

  • v0.0.9(Nov 7, 2021)

    This is a hot-fix release after the big 0.0.8 release (see the release notes for 0.0.8):

    • revert the breaking change in NumericalFeatureTokenizer accidentally introduced in 0.0.8
    • minor documentation refinements
    Source code(tar.gz)
    Source code(zip)
  • v0.0.8(Nov 6, 2021)

    This release focuses on improving the documentation.

    Documentation

    • The following models and classes are now documented:
      • MLP
      • ResNet
      • FTTransformer
      • MultiheadAttention
      • NumericalFeatureTokenizer
      • CategoricalFeatureTokenizer
      • FeatureTokenizer
      • CLSToken
    • Usability have been greatly improved:
      • signatures are now highlighted
      • added the "copy" button to code blocks
      • permalink buttons (signature anchors) are now visible

    Bug fixes

    • MultiheadAttention: fix the crash when bias=False

    Dependencies

    • numpy >= 1.18
    • torch >= 1.7

    Project

    • added spell checking for documentation
    • sphinx was updated to 4.2.0
    • flit was updated to 3.4.0
    Source code(tar.gz)
    Source code(zip)
  • v0.0.7(Oct 10, 2021)

  • v0.0.6(Aug 26, 2021)

    v0.0.6

    New features

    • CLSToken (old name: "AppendCLSToken"): add expand method for easy construction of batches of [CLS]-tokens

    Bug fixes

    • FTTransformer: the make_baseline method now properly constructs an instance

    API changes

    • FTTransformer: the ffn_d_intermidiate argument was renamed to a more conventional ffn_d_hidden
    • FTTransformer: the normalization argument was split into three arguments: attention_normalization, ffn_normalization, head_normalization
    • ResNet: the d_intermidiate argument was renamed to a more conventional d_hidden
    • AppendCLSToken: renamed to CLSToken

    Documentation improvements

    • CLSToken
    • MLP.make_baseline

    Project

    • add tests with CUDA
    • remove the .vscode directory from the repository
    Source code(tar.gz)
    Source code(zip)
  • v0.0.5(Jul 20, 2021)

    API Changes:

    • MLP.make_baseline is now more user-friendly and accepts a single d_layers argument instead of four (d_first, d_intermidiate, d_last, n_blocks)
    Source code(tar.gz)
    Source code(zip)
  • v0.0.4(Jul 11, 2021)

  • v0.0.3(Jul 2, 2021)

    API Changes

    • ResNet & ResNet.Block: the d parameter was renamed to d_main

    Fixes

    • minor fix in the comments in examples/rtdl.ipynb

    Project

    • add tests that validate that the models in rtdl are literally the same as in the implementation of the paper
    Source code(tar.gz)
    Source code(zip)
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Few-Shot-Intent-Detection Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It

Jian-Guo Zhang 73 Dec 26, 2022
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

🤗 Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022