EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

Related tags

Deep Learningeasy
Overview

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

This repository is the official implementation of EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY proposes a simple methodology, that reaches or even beats state of the art performance on multiple standardized benchmarks of the field, while adding almost no hyperparameters or parameters to those used for training the initial deep learning models on the generic dataset.

Downloads

Please click the Google Drive link for downloading the features, backbones and datasets.

Each of the files (backbones and features) have the following prefixes depending on the backbone:

Backbone prefix Number of parameters
ResNet12 12M
ResNet12(1/sqrt(2)) small 6M
ResNet12(1/2) tiny 3M

Each of the features file is named as follow :

  • if not AS : " features .pt11"
  • if AS : " featuresAS .pt11"

Testing scripts for EASY

Run scripts to evaluate the features on FSL tasks for Y and ASY. For EY and EASY use the corresponding features.

Inductive setup using NCM

Test features on miniimagenet using Y (Resnet12)

" --dataset miniimagenet --model resnet12 --test-features ' /minifeatures1.pt11' --preprocessing ME">
$ python main.py --dataset-path "
     
      " --dataset miniimagenet --model resnet12 --test-features '
      
       /minifeatures1.pt11' --preprocessing ME

      
     

Test features on miniimagenet using ASY (Resnet12)

" --dataset miniimagenet --model resnet12 --test-features ' /minifeaturesAS1.pt11' --preprocessing ME">
$ python main.py --dataset-path "
     
      " --dataset miniimagenet --model resnet12 --test-features '
      
       /minifeaturesAS1.pt11' --preprocessing ME

      
     

Test features on miniimagenet using EY (3xResNet12)

" --dataset miniimagenet --model resnet12 --test-features "[ /minifeatures1.pt11, /minifeatures2.pt11, /minifeatures3.pt11]" --preprocessing ME">
$ python main.py --dataset-path "
       
        " --dataset miniimagenet --model resnet12 --test-features "[
        
         /minifeatures1.pt11, 
         
          /minifeatures2.pt11, 
          
           /minifeatures3.pt11]" --preprocessing ME

          
         
        
       

Test features on miniimagenet using EASY (3xResNet12)

" --dataset miniimagenet --model resnet12 --test-features "[ /minifeaturesAS1.pt11, /minifeaturesAS2.pt11, /minifeaturesAS3.pt11]" --preprocessing ME ">
$ python main.py --dataset-path "
       
        " --dataset miniimagenet --model resnet12 --test-features "[
        
         /minifeaturesAS1.pt11, 
         
          /minifeaturesAS2.pt11, 
          
           /minifeaturesAS3.pt11]" --preprocessing ME 

          
         
        
       

Transductive setup using Soft k-means

Test features on miniimagenet using Y (ResNet12)

" --dataset miniimagenet --model resnet12 --test-features ' /minifeatures1.pt11'--postprocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20">
$ python main.py --dataset-path "
     
      " --dataset miniimagenet --model resnet12 --test-features '
      
       /minifeatures1.pt11'--postprocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20

      
     

Test features on miniimagenet using ASY (ResNet12)

" --dataset miniimagenet --model resnet12 --test-features ' /minifeaturesAS1.pt11' --postprocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20">
$ python main.py --dataset-path "
     
      " --dataset miniimagenet --model resnet12 --test-features '
      
       /minifeaturesAS1.pt11' --postprocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20

      
     

Test features on miniimagenet using EY (3xResNet12)

" --dataset miniimagenet --model resnet12 --test-features "[ /minifeatures1.pt11, /minifeatures2.pt11, /minifeatures3.pt11]" --postrocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20">
$ python main.py --dataset-path "
       
        " --dataset miniimagenet --model resnet12 --test-features "[
        
         /minifeatures1.pt11, 
         
          /minifeatures2.pt11, 
          
           /minifeatures3.pt11]" --postrocessing ME  --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20

          
         
        
       

Test features on miniimagenet using EASY (3xResNet12)

" --dataset miniimagenet --model resnet12 --test-features "[ /minifeaturesAS1.pt11, /minifeaturesAS2.pt11, /minifeaturesAS3.pt11]" --postrocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20">
$ python main.py --dataset-path "
       
        " --dataset miniimagenet --model resnet12 --test-features "[
        
         /minifeaturesAS1.pt11, 
         
          /minifeaturesAS2.pt11, 
          
           /minifeaturesAS3.pt11]" --postrocessing ME  --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20

          
         
        
       

Training scripts for Y

Train a model on miniimagenet using manifold mixup, self-supervision and cosine scheduler

" --dataset miniimagenet --model resnet12 --epochs 0 --manifold-mixup 500 --rotations --cosine --gamma 0.9 --milestones 100 --batch-size 128 --preprocessing ME ">
$ python main.py --dataset-path "
    
     " --dataset miniimagenet --model resnet12 --epochs 0 --manifold-mixup 500 --rotations --cosine --gamma 0.9 --milestones 100 --batch-size 128 --preprocessing ME 

    

Important Arguments

Some important arguments for our code.

Training arguments

  • dataset: choices=['miniimagenet', 'cubfs','tieredimagenet', 'fc100', 'cifarfs']
  • model: choices=['resnet12', 'resnet18', 'resnet20', 'wideresnet', 's2m2r']
  • dataset-path: path of the datasets folder which contains folders of all the datasets.

Few-shot Classification

  • preprocessing: preprocessing sequence for few shot given as a string, can contain R:relu P:sqrt E:sphering and M:centering using the base data.
  • postprocessing: postprocessing sequence for few shot given as a string, can contain R:relu P:sqrt E:sphering and M:centering on the few-shot data, used for transductive setting.

Few-shot classification Results

Experimental results on few-shot learning datasets with ResNet-12 backbone. We report our average results with 10000 randomly sampled episodes for both 1-shot and 5-shot evaluations.

MiniImageNet Dataset (inductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
SimpleShot [29] 62.85 ± 0.20 80.02 ± 0.14
Baseline++ [30] 53.97 ± 0.79 75.90 ± 0.61
TADAM [35] 58.50 ± 0.30 76.70 ± 0.30
ProtoNet [10] 60.37 ± 0.83 78.02 ± 0.57
R2-D2 (+ens) [20] 64.79 ± 0.45 81.08 ± 0.32
FEAT [36] 66.78 82.05
CNL [37] 67.96 ± 0.98 83.36 ± 0.51
MERL [38] 67.40 ± 0.43 83.40 ± 0.28
Deep EMD v2 [13] 68.77 ± 0.29 84.13 ± 0.53
PAL [8] 69.37 ± 0.64 84.40 ± 0.44
inv-equ [39] 67.28 ± 0.80 84.78 ± 0.50
CSEI [40] 68.94 ± 0.28 85.07 ± 0.50
COSOC [9] 69.28 ± 0.49 85.16 ± 0.42
EASY 2×ResNet12 1/√2 (ours) 70.63 ± 0.20 86.28 ± 0.12
above <=12M nb of parameters below 36M
3S2M2R [12] 64.93 ± 0.18 83.18 ± 0.11
LR + DC [17] 68.55 ± 0.55 82.88 ± 0.42
EASY 3×ResNet12 (ours) 71.75 ± 0.19 87.15 ± 0.12

TieredImageNet Dataset (inductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
SimpleShot [29] 69.09 ± 0.22 84.58 ± 0.16
ProtoNet [10] 65.65 ± 0.92 83.40 ± 0.65
FEAT [36] 70.80 ± 0.23 84.79 ± 0.16
PAL [8] 72.25 ± 0.72 86.95 ± 0.47
DeepEMD v2 [13] 74.29 ± 0.32 86.98 ± 0.60
MERL [38] 72.14 ± 0.51 87.01 ± 0.35
COSOC [9] 73.57 ± 0.43 87.57 ± 0.10
CNL [37] 73.42 ± 0.95 87.72 ± 0.75
invariance-equivariance [39] 72.21 ± 0.90 87.08 ± 0.58
CSEI [40] 73.76 ± 0.32 87.83 ± 0.59
ASY ResNet12 (ours) 74.31 ± 0.22 87.86 ± 0.15
above <=12M nb of parameters below 36M
S2M2R [12] 73.71 ± 0.22 88.52 ± 0.14
EASY 3×ResNet12 (ours) 74.71 ± 0.22 88.33 ± 0.14

CUBFS Dataset (inductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
FEAT [36] 68.87 ± 0.22 82.90 ± 0.10
LaplacianShot [41] 80.96 88.68
ProtoNet [10] 66.09 ± 0.92 82.50 ± 0.58
DeepEMD v2 [13] 79.27 ± 0.29 89.80 ± 0.51
EASY 4×ResNet12 1/sqrt(2) 77.97 ± 0.20 91.59 ± 0.10
above <=12M nb of parameters below 36M
S2M2R [12] 80.68 ± 0.81 90.85 ± 0.44
EASY 3×ResNet12 (ours) 78.56 ± 0.19 91.93 ± 0.10

CIFAR-FS Dataset (inductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
S2M2R [12] 63.66 ± 0.17 76.07 ± 0.19
R2-D2 (+ens) [20] 76.51 ± 0.47 87.63 ± 0.34
invariance-equivariance [39] 77.87 ± 0.85 89.74 ± 0.57
EASY 2×ResNet12 1/sqrt(2) (ours) 75.24 ± 0.20 88.38 ± 0.14
above <=12M nb of parameters below 36M
S2M2R [12] 74.81 ± 0.19 87.47 ± 0.13
EASY 3×ResNet12 (ours) 76.20 ± 0.20 89.00 ± 0.14

FC-100 Dataset (inductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
DeepEMD v2 [13] 46.60 ± 0.26 63.22 ± 0.71
TADAM [35] 40.10 ± 0.40 56.10 ± 0.40
ProtoNet [10] 41.54 ± 0.76 57.08 ± 0.76
invariance-equivariance [39] 47.76 ± 0.77 65.30 ± 0.76
R2-D2 (+ens) [20] 44.75 ± 0.43 59.94 ± 0.41
EASY 2×ResNet12 1/sqrt(2) (ours) 47.94 ± 0.19 64.14 ± 0.19
above <=12M nb of parameters below 36M
EASY 3×ResNet12 (ours) 48.07 ± 0.19 64.74 ± 0.19

Minimagenet (transductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
TIM-GD [42] 73.90 85.00
ODC [43] 77.20 ± 0.36 87.11 ± 0.42
PEMnE-BMS∗ [32] 80.56 ± 0.27 87.98 ± 0.14
SSR [44] 68.10 ± 0.60 76.90 ± 0.40
iLPC [45] 69.79 ± 0.99 79.82 ± 0.55
EPNet [31] 66.50 ± 0.89 81.60 ± 0.60
DPGN [46] 67.77 ± 0.32 84.60 ± 0.43
ECKPN [47] 70.48 ± 0.38 85.42 ± 0.46
Rot+KD+POODLE [48] 77.56 85.81
EASY 2×ResNet12( 1√2) (ours) 81.70 ±0.25 88.29 ±0.13
above <=12M nb of parameters below 36M
SSR [44] 72.40 ± 0.60 80.20 ± 0.40
fine-tuning(train+val) [49] 68.11 ± 0.69 80.36 ± 0.50
SIB+E3BM [50] 71.40 81.20
LR+DC [17] 68.57 ± 0.55 82.88 ± 0.42
EPNet [31] 70.74 ± 0.85 84.34 ± 0.53
TIM-GD [42] 77.80 87.40
PT+MAP [51] 82.92 ± 0.26 88.82 ± 0.13
iLPC [45] 83.05 ± 0.79 88.82 ± 0.42
ODC [43] 80.64 ± 0.34 89.39 ± 0.39
PEMnE-BMS∗ [32] 83.35 ± 0.25 89.53 ± 0.13
EASY 3×ResNet12 (ours) 82.75 ±0.25 88.93 ±0.12

CUB-FS (transductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
TIM-GD [42] 82.20 90.80
ODC [43] 85.87 94.97
DPGN [46] 75.71 ± 0.47 91.48 ± 0.33
ECKPN [47] 77.43 ± 0.54 92.21 ± 0.41
iLPC [45] 89.00 ± 0.70 92.74 ± 0.35
Rot+KD+POODLE [48] 89.93 93.78
EASY 4×ResNet12( 1/2) (ours) 90.41 ± 0.19 93.58 ± 0.10
above <=12M nb of parameters below 36M
LR+DC [17] 79.56 ± 0.87 90.67 ± 0.35
PT+MAP [51] 91.55 ± 0.19 93.99 ± 0.10
iLPC [45] 91.03 ± 0.63 94.11 ± 0.30
EASY 3×ResNet12 (ours) 90.76 ± 0.19 93.90 ± 0.09

CIFAR-FS (transductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
SSR [44] 76.80 ± 0.60 83.70 ± 0.40
iLPC [45] 77.14 ± 0.95 85.23 ± 0.55
DPGN [46] 77.90 ± 0.50 90.02 ± 0.40
ECKPN [47] 79.20 ± 0.40 91.00 ± 0.50
EASY 2×ResNet12 (1/sqrt(2)) (ours) 86.40 ± 0.23 89.75 ± 0.15
above <=12M nb of parameters below 36M
SSR [44] 81.60 ± 0.60 86.00 ± 0.40
fine-tuning (train+val) [49] 78.36 ± 0.70 87.54 ± 0.49
iLPC [45] 86.51 ± 0.75 90.60 ± 0.48
PT+MAP [51] 87.69 ± 0.23 90.68 ± 0.15
EASY 3×ResNet12 (ours) 86.96 ± 0.22 90.30 ± 0.15

FC-100 (transductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
EASY 2×ResNet12( 1√2)(ours) 54.68 ± 0.25 66.19 ± 0.20
above <=12M nb of parameters below 36M
SIB+E3BM [50] 46.00 57.10
fine-tuning (train) [49] 43.16 ± 0.59 57.57 ± 0.55
ODC [43] 47.18 ± 0.30 59.21 ± 0.56
fine-tuning (train+val) [49] 50.44 ± 0.68 65.74 ± 0.60
EASY 3×ResNet12 (ours) 55.11 ± 0.25 67.09 ± 0.20

Tiered Imagenet (transducive)

Methods 1-Shot 5-Way 5-Shot 5-Way
PT+MAP [51] 85.67 ± 0.26 90.45 ± 0.14
TIM-GD [42] 79.90 88.50
ODC [43] 83.73 ± 0.36 90.46 ± 0.46
SSR [44] 81.20 ± 0.60 85.70 ± 0.40
Rot+KD+POODLE [48] 79.67 86.96
DPGN [46] 72.45 ± 0.51 87.24 ± 0.39
EPNet [31] 76.53 ± 0.87 87.32 ± 0.64
ECKPN [47] 73.59 ± 0.45 88.13 ± 0.28
iLPC [45] 83.49 ± 0.88 89.48 ± 0.47
ASY ResNet12 (ours) 82.66 ± 0.27 88.60 ± 0.14
above <=12M nb of parameters below 36M
SIB+E3BM [50] 75.60 84.30
SSR [44] 79.50 ± 0.60 84.80 ± 0.40
fine-tuning (train+val) [49] 72.87 ± 0.71 86.15 ± 0.50
TIM-GD [42] 82.10 89.80
LR+DC [17] 78.19 ± 0.25 89.90 ± 0.41
EPNet [31] 78.50 ± 0.91 88.36 ± 0.57
ODC [43] 85.22 ± 0.34 91.35 ± 0.42
iLPC [45] 88.50 ± 0.75 92.46 ± 0.42
PEMnE-BMS∗ [32] 86.07 ± 0.25 91.09 ± 0.14
EASY 3×ResNet12 (ours) 84.48 ± 0.27 89.71 ± 0.14
Owner
Yassir BENDOU
Ph.D student working on Few-shot learning problems. I enjoy maths and coding.
Yassir BENDOU
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
Record radiologists' eye gaze when they are labeling images.

Record radiologists' eye gaze when they are labeling images. Read for installation, usage, and deep learning examples. Why use MicEye Versatile As a l

24 Nov 03, 2022
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022