[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

Overview

MobileSal

IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection

This repository contains full training & testing code, and pretrained saliency maps. We have achieved competitive performance on the RGB-D salient object detection task with a speed of 450fps.

If you run into any problems or feel any difficulties to run this code, do not hesitate to leave issues in this repository.

My e-mail is: wuyuhuan @ mail.nankai (dot) edu.cn

[PDF]

Requirements

PyTorch

  • Python 3.6+
  • PyTorch >=0.4.1, OpenCV-Python
  • Tested on PyTorch 1.7.1

Jittor

  • Python 3.7+
  • Jittor, OpenCV-Python
  • Tested on Jittor 1.3.1

For Jittor users, we create a branch jittor. So please run the following command first:

git checkout jittor

Installing

Please prepare the required packages.

pip install -r envs/requirements.txt

Data Preparing

Before training/testing our network, please download the training data:

Note: if you are blocked by Google and Baidu services, you can contact me via e-mail and I will send you a copy of data and model weights.

We have processed the data to json format so you can use them without any preprocessing steps. After completion of downloading, extract the data and put them to ./data/ folder. Then, the ./datasets/ folder should contain six folders: NJU2K/, NLPR/, STERE/, SSD/, SIP/, DUT-RGBD/, representing NJU2K, NLPR, STEREO, SSD, SIP, DUTLF-D datasets, respectively.

Train

It is very simple to train our network. We have prepared a script to run the training step:

bash ./tools/train.sh

Pretrained Models

As in our paper, we train our model on the NJU2K_NLPR training set, and test our model on NJU2K_test, NLPR_test, STEREO, SIP, and SSD datasets. For DUTLF-D, we train our model on DUTLF-D training set and evaluate on its testing test.

(Default) Trained on NJU2K_NLPR training set:

(Custom) Training on DUTLF-D training set:

Download them and put them into the pretrained/ folder.

Test / Evaluation / Results

After preparing the pretrained models, it is also very simple to test our network:

bash ./tools/test.sh

The scripts will automatically generate saliency maps on the maps/ directory.

Pretrained Saliency maps

For covenience, we provide the pretrained saliency maps on several datasets as below:

TODO

  1. Release the pretrained models and saliency maps on COME15K dataset.
  2. Release the ONNX model for real-world applications.
  3. Add results with the P2T transformer backbone.

Other Tips

  • I encourage everyone to contact me via my e-mail. My e-mail is: wuyuhuan @ mail.nankai (dot) edu.cn

License

The code is released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License for NonCommercial use only.

Citations

If you are using the code/model/data provided here in a publication, please consider citing our work:

@ARTICLE{wu2021mobilesal,
  author={Wu, Yu-Huan and Liu, Yun and Xu, Jun and Bian, Jia-Wang and Gu, Yu-Chao and Cheng, Ming-Ming},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={MobileSal: Extremely Efficient RGB-D Salient Object Detection}, 
  year={2021},
  doi={10.1109/TPAMI.2021.3134684}
}

Acknowlogdement

This repository is built under the help of the following five projects for academic use only:

Owner
Yu-Huan Wu
Ph.D. student at Nankai University
Yu-Huan Wu
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
《Rethinking Sptil Dimensions of Vision Trnsformers》(2021)

Rethinking Spatial Dimensions of Vision Transformers Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh | Paper NAVER

NAVER AI 224 Dec 27, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the

Zhanghan Ke 255 Dec 11, 2022
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022