Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

Overview

IAug_CDNet

Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

Overview

We propose a novel data-level solution, namely Instance-level change Augmentation (IAug), to generate bi-temporal images that contain changes involving plenty and diverse buildings by leveraging generative adversarial training. The key of IAug is to blend synthesized building instances onto appropriate positions of one of the bi-temporal images. To achieve this, a building generator is employed to produce realistic building images that are consistent with the given layouts. Diverse styles are later transferred onto the generated images. We further propose context-aware blending for a realistic composite of the building and the background. We augment the existing CD datasets and also design a simple yet effective CD model - CDNet. Our method (CDNet + IAug) has achieved state-of-the-art results in two building CD datasets (LEVIR-CD and WHU-CD). Interestingly, we achieve comparable results with only 20% of the training data as the current state-of-the-art methods using 100% data. Extensive experiments have validated the effectiveness of the proposed IAug. Our augmented dataset has a lower risk of class imbalance than the original one. Conventional learning on the synthesized dataset outperforms several popular cost-sensitive algorithms on the original dataset.

Building Generator

See building generator for details.

Synthesized images (256 * 256) by the generator (trained on the AIRS building dataset).syn_example_airs

Synthesized images (64 * 64) by the generator (trained on the Inria building dataset).syn_example_inria

Installation

This code requires PyTorch 1.0 and python 3+. Please install dependencies by

pip install -r requirements.txt

Generating Images Using Pretrained Model

Once the dataset is ready, the result images can be generated using pretrained models.

  1. Download the tar of the pretrained models from the Google Drive

  2. Generate images using the pretrained model.

    python test.py --model pix2pix --name $pretrained_folder --results_dir $results_dir --dataset_mode custom --label_dir $label_dir --label_nc 2 --batchSize $batchSize --load_size $size --crop_size $size --no_instance --which_epoch lastest

    pretrained_folder is the directory name of the checkpoint file downloaded in Step 1, results_dir is the directory name to save the synthesized images, label_dir is the directory name of the semantic labels, size is the size of the label map fed to the generator.

  3. The outputs images are stored at results_dir. You can view them using the autogenerated HTML file in the directory.

For simplicity, we also provide the test script in scripts/run_test.sh, one can modify the label_dir and name and then run the script.

Training New Models

New models can be trained with the following commands.

  1. Prepare the dataset. You can first prepare the building image patches and corresponding label maps in two folders (image_dir, label_dir).

  2. Train the model.

# To train on your own custom dataset
python train.py --name [experiment_name] --dataset_mode custom --label_dir [label_dir] -- image_dir [image_dir] --label_nc 2

There are many options you can specify. Please use python train.py --help. The specified options are printed to the console. To specify the number of GPUs to utilize, use --gpu_ids. If you want to use the second and third GPUs for example, use --gpu_ids 1,2.

To log training, use --tf_log for Tensorboard. The logs are stored at [checkpoints_dir]/[name]/logs.

Acknowledge

This code borrows heavily from spade.

Color Transfer

See Color Transfer for deteils.

We resort to a simple yet effective nonlearning approach to match the color distribution of the two image sets (GAN-generated images and original images in the change detection dataset).

color_transfer

Requirements

  • Matlab

Usage

We provide two demos to show the color transfer.

When you do not have the object mask. You can edit the file ColorTransferDemo.m, modify the file path of the Im_target and Im_source. After you run this file, the transfered image is saved as result_Image.jpg.

When you do have both the building image and the object mask. You can edit the file ColorTransferDemo_with_mask.m, modify the file path of the Im_target, Im_source, m_target and m_source. After you run this file, the transfered image is saved as result_Image.jpg.

Acknowledge

This code borrows heavily from https://github.com/AissamDjahnine/ColorTransfer.

Shadow Extraction

We show a simple shadow extraction method. The extracted shadow information can be used to make a more realistic image composite in the latter process.

shadow_extraction

We provide some examples for shadow extraction. The samples are in the folder samples\shadow_sample.

Usage

You can edit the file extract_shadow.py and modify the path of the image_folder, label_folder and out_folder. Make sure that the image files are in image_folder and the corresponding label files are in label_folder. Run the following script:

python extract_shadow.py

Once you have successfully run the python file, the results can be found in the out folder.

Instance augmentation

Here, we provide the python implementation of instance augmentation.

image-20210413152845314

We provide some examples for instance augmentation. The samples are in the folder samples\SYN_CD.

Usage

You can edit the file composite_CD_sample.py and modify the following values:

#  first define the some paths
A_folder = r'samples\LEVIR\A'
B_folder = r'samples\LEVIR\B'
L_folder = r'samples\LEVIR\label'
ref_folder = r'samples\LEVIR\ref'
#  instance path
src_folder = r'samples\SYN_CD\image' #test
label_folder = r'samples\SYN_CD\shadow'  # test
out_folder = r'samples\SYN_CD\out_sample'
os.makedirs(out_folder, exist_ok=True)
# how many instance to paste per sample
M = 50

Then, run the following script:

python composite_CD_sample.py

Once you have successfully run the python file, the results can be found in the out folder.

CDNet

Coming soon~~~~

Citation

If you use this code for your research, please cite our paper:

@Article{chen2021,
    title={Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images},
    author={Hao Chen, Wenyuan Li and Zhenwei Shi},
    year={2021},
    journal={IEEE Transactions on Geoscience and Remote Sensing},
    volume={},
    number={},
    pages={1-16},
    doi={10.1109/TGRS.2021.3066802}
}
Owner
keep forward
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022