Source code of paper "BP-Transformer: Modelling Long-Range Context via Binary Partitioning"

Related tags

Text Data & NLPBPT
Overview

BP-Transformer

This repo contains the code for our paper

BP-Transformer: Modeling Long-Range Context via Binary Partition

Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, Zheng Zhang

The code is written in DGL with PyTorch as backend.

Requirements

  • torchtext 0.4
  • dgl 0.4 (the code on master branch is not compatible with dgl 0.5, please checkout develop branch for dgl 0.5 compatible version).
  • yaml
  • spacy
  • PyTorch 1.1+

Usage

For Multi-GPU training, please export NCCL_LL_THRESHOLD=0 before running scripts because of a PyTorch bug mentioned here.

The codebase has two dependencies: graph_kernel and graph_builder, the first one is for efficient graph attention on GPU with node parallel strategy written in CUDA, the second one is for efficient graph construction written in Cython. To install them:

cd graph_builder
python setup.py install
cd ..
cd graph_kernel
python setup.py install
cd ..

We support the following tasks with BPT as backbone:

  • Text Classification: text_classification.py
  • Language Modeling: lm.py
  • Machine Translation: mt.py
  • Natural Language Inference: nli.py

All experiment settings mentioned in our paper are available at configs/.

python *.py --config configs/*.yml --gpu [GPUs]

Note that this repo does not contain any data files, to get dataset required for experiments, run . get_*.sh and the corresponding dataset would be downloaded and preprocessed.

For machine translation, we have another script mt_infer.py for decoding:

python mt_infer.py --config configs/*.yml --gpu [GPU]

Before decoding, please make sure you have finished the training using mt.py with the same config file.

NOTE: Currently we do not support CPU training/inference.

Visualization

Following is the visualization of the sparse matrix of BPT underlying graph when sequence length is 8192 and k is 4. image

Results

  • Character-Level Language Modeling (enwik8, metric: bpc), 12 layers.
    • BPT(context length=8192): 1.02
    • Adaptive Transformer: 1.02
    • Transformer-XL: 1.06
    • To reproduce: python lm.py --config configs/enwik8-8192.yml --gpu 0,1,2,3,4,5,6,7
  • Document-Level Machine Translation (IWSLT 2015 Zh-En, metric: BLEU), base setting.
    • BPT(context length=64): 19.84
    • HAN-NMT: 17.68
    • To reproduce: python mt.py --config configs/iwslt-4-64.yml --gpu 0
  • Text Classification (IMDB, metric: accuracy), 5 layers.
    • BPT+GloVe: 92.12(±0.11)
    • LSTM+CoVe: 91.8
    • Transformer+Glove: 89.24(±0.20)
    • Star Transformer: 90.50
    • To reproduce: python text_classification.py --config configs/imdb-4.yml --gpu 0
      • Note that our CUDA kernel uses atomic operations which may result in non-determinism, we report the mean and std of accuracy in multiple(10) runs.
      • The IMDB dataset has not official train/dev split, we follow the setting of Bryan et al., 2017 and hold out 10% samples for validation. We report the test accuracy of model with best valid loss.

For sentence level modeling, we show that BPT models better inductive bias than vanilla transformer by attending fine-grained features of neighbors and coarse-grained features of far-away tokens.

  • Machine Translation(WMT14 En-De, metric: BLEU), base setting.
    • BPT(k=1): 26.9
    • BPT(k=2): 27.4
    • BPT(k=4): 27.6
    • BPT(k=8): 26.7
    • Transformer-base(our implementation): 27.2
    • To reproduce: python mt.py --config configs/wmt-*.yml --gpu 0,1,2,3,4,5,6,7
      • We report SacreBLEU result for reproducibility (setting: BLEU+c.mixed+l.en-de+#.1+s.exp+t.wmt14+tok.intl+v.1.4.1), the sacrebleu score is usually lower than that produced by get_ende_bleu.sh script in tensor2tensor as described here.
  • Natural Language Inference(SNLI, metric: accuracy), ESIM-like structure, 3 layers for self-attention and 3 layers for cross-sentence attention.
    • BPT(k=4): 88.25(±0.07)
    • Transformer: 87.89(±0.31)
    • To reproduce: python nli.py --config configs/snli.yml --gpu 0
      • Like Text Classification, the result on NLI is also not stable because of randomness in our CUDA kernel, we report the mean and std of accuracy in multiple(7) runs.
  • Text Classification(SST-5, metric: accuracy), 4 layers.
    • BPT+GloVe: 52.71(±0.32)
    • Transformer+GloVe: 50.40
    • Tree-LSTM+GloVe: 51.0
    • To reproduce: python text_classification.py --config configs/sst5-2.yml --gpu 0

TODOs

  • FP16 support (mixed-precision training/inference)
  • Integrate kernels with dgl 0.5
  • CPU support
Owner
Zihao Ye
Ph.D. [email protected] of Washington, focusing on Compilers and Computer Arch
Zihao Ye
a test times augmentation toolkit based on paddle2.0.

Patta Image Test Time Augmentation with Paddle2.0! Input | # input batch of images / / /|\ \ \ # apply

AgentMaker 110 Dec 03, 2022
超轻量级bert的pytorch版本,大量中文注释,容易修改结构,持续更新

bert4pytorch 2021年8月27更新: 感谢大家的star,最近有小伙伴反映了一些小的bug,我也注意到了,奈何这个月工作上实在太忙,更新不及时,大约会在9月中旬集中更新一个只需要pip一下就完全可用的版本,然后会新添加一些关键注释。 再增加对抗训练的内容,更新一个完整的finetune

muqiu 317 Dec 18, 2022
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.

Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computa

Open Business Software Solutions 129 Jan 06, 2023
Repository of the Code to Chatbots, developed in Python

Description In this repository you will find the Code to my Chatbots, developed in Python. I'll explain the structure of this Repository later. Requir

Li-am K. 0 Oct 25, 2022
Bpe algorithm can finetune tokenizer - Bpe algorithm can finetune tokenizer

"# bpe_algorithm_can_finetune_tokenizer" this is an implyment for https://github

张博 1 Feb 02, 2022
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an

Vibhor Agarwal 2 Jun 30, 2022
Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology (EARIST)

🤖 Coeus - EARIST A.C.E 💬 Coeus is an Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology,

Dids Irwyn Reyes 3 Oct 14, 2022
This is a project of data parallel that running on NLP tasks.

This is a project of data parallel that running on NLP tasks.

2 Dec 12, 2021
Auto-researching tool generating word documents.

About ResearchTE automates researching by generating document with answers to given questions. Supports getting results from: Google DuckDuckGo (with

1 Feb 14, 2022
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 07, 2023
Persian-lexicon - A lexicon of 70K unique Persian (Farsi) words

Persian Lexicon This repo uses Uppsala Persian Corpus (UPC) to construct a lexic

Saman Vaisipour 7 Apr 01, 2022
test

Lidar-data-decode In this project, you can decode your lidar data frame(pcap file) and make your own datasets(test dataset) in Windows without any hug

46 Dec 05, 2022
This is a MD5 password/passphrase brute force tool

CROWES-PASS-CRACK-TOOl This is a MD5 password/passphrase brute force tool How to install: Do 'git clone https://github.com/CROW31/CROWES-PASS-CRACK-TO

9 Mar 02, 2022
SciBERT is a BERT model trained on scientific text.

SciBERT is a BERT model trained on scientific text.

AI2 1.2k Dec 24, 2022
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022
A flask application to predict the speech emotion of any .wav file.

This is a speech emotion recognition app. It will allow you to train a modular MLP model with the RAVDESS dataset, and then use that model with a flask application to predict the speech emotion of an

Aryan Vijaywargia 2 Dec 15, 2021
Sentiment Analysis Project using Count Vectorizer and TF-IDF Vectorizer

Sentiment Analysis Project This project contains two sentiment analysis programs for Hotel Reviews using a Hotel Reviews dataset from Datafiniti. The

Simran Farrukh 0 Mar 28, 2022